Phenotypic trait in the context of "Phenotypical"

Play Trivia Questions online!

or

Skip to study material about Phenotypic trait in the context of "Phenotypical"

Ad spacer

⭐ Core Definition: Phenotypic trait

A phenotypic trait, simply trait, or character state is a distinct variant of a phenotypic characteristic of an organism; it may be either inherited or determined environmentally, but typically occurs as a combination of the two. For example, having eye color is a character of an organism, while blue, brown and hazel versions of eye color are traits. The term trait is generally used in genetics, often to describe the phenotypic expression of different combinations of alleles in different individual organisms within a single population, such as the famous purple vs. white flower coloration in Gregor Mendel's pea plants. By contrast, in systematics, the term character state is employed to describe features that represent fixed diagnostic differences among taxa, such as the absence of tails in great apes, relative to other primate groups.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Phenotypic trait in the context of Cultivar

A cultivar is a kind of cultivated plant that people have selected for desired traits and which retains those traits when propagated. Methods used to propagate cultivars include division, root and stem cuttings, offsets, grafting, tissue culture, or carefully controlled seed production. Most cultivars arise from deliberate human manipulation, but some originate from wild plants that have distinctive characteristics. Cultivar names are chosen according to rules of the International Code of Nomenclature for Cultivated Plants (ICNCP), and not all cultivated plants qualify as cultivars. Horticulturists generally believe the word cultivar was coined as a term meaning "cultivated variety".

Popular ornamental plants like roses, camellias, daffodils, rhododendrons, and azaleas are commonly cultivars produced by breeding and selection or as sports, for floral colour or size, plant form, or other desirable characteristics. Similarly, the world's agricultural food crops are almost exclusively cultivars that have been selected for characters such as improved yield, flavour, and resistance to disease. Since the advent of genetic engineering in the 1970s and the rise of its application in crop breeding in the 1980s, very few wild plants are used as commercial food sources. Trees used in forestry are also special selections grown for their enhanced quality and yield of timber, for example American timber company Weyerhaeuser is the leading grower of genetically modified Douglas-fir trees, one of the most commonly harvested trees.

↑ Return to Menu

Phenotypic trait in the context of Evolution

Evolution is the change in the heritable characteristics of biological populations over successive generations. It occurs when evolutionary processes such as genetic drift and natural selection act on genetic variation, resulting in certain characteristics becoming more or less common within a population over successive generations. The process of evolution has given rise to biodiversity at every level of biological organisation.

The scientific theory of evolution by natural selection was conceived independently by two British naturalists, Charles Darwin and Alfred Russel Wallace, in the mid-19th century as an explanation for why organisms are adapted to their physical and biological environments. The theory was first set out in detail in Darwin's book On the Origin of Species. Evolution by natural selection is established by observable facts about living organisms: (1) more offspring are often produced than can possibly survive; (2) traits vary among individuals with respect to their morphology, physiology, and behaviour; (3) different traits confer different rates of survival and reproduction (differential fitness); and (4) traits can be passed from generation to generation (heritability of fitness). In successive generations, members of a population are therefore more likely to be replaced by the offspring of parents with favourable characteristics for that environment.

↑ Return to Menu

Phenotypic trait in the context of Gene

In biology, the word gene has two meanings. The Mendelian gene is a basic unit of heredity. The molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA. There are two types of molecular genes: protein-coding genes and non-coding genes. During gene expression (the synthesis of RNA or protein from a gene), DNA is first copied into RNA. RNA can be directly functional or be the intermediate template for the synthesis of a protein.

The transmission of genes to an organism's offspring is the basis of the inheritance of phenotypic traits from one generation to the next. These genes make up different DNA sequences, together called a genotype, that is specific to every given individual, within the gene pool of the population of a given species. The genotype, along with environmental and developmental factors, ultimately determines the phenotype of the individual.

↑ Return to Menu

Phenotypic trait in the context of Heredity

Heredity, also called inheritance or biological inheritance, is the passing on of traits from parents to their offspring; either through asexual reproduction or sexual reproduction, the offspring cells or organisms acquire the genetic information of their parents. Through heredity, variations between individuals can accumulate and cause species to evolve by natural selection. The study of heredity in biology is genetics.

↑ Return to Menu

Phenotypic trait in the context of Adaptation

In biology, adaptation has three related meanings. Firstly, it is the dynamic evolutionary process of natural selection that fits organisms to their environment, enhancing their evolutionary fitness. Secondly, it is a state reached by the population during that process. Thirdly, it is a phenotypic trait or adaptive trait, with a functional role in each individual organism, that is maintained and has evolved through natural selection.

Historically, adaptation has been described from the time of the ancient Greek philosophers such as Empedocles and Aristotle. In 18th and 19th-century natural theology, adaptation was taken as evidence for the existence of a deity. Charles Darwin and Alfred Russel Wallace proposed instead that it was explained by natural selection.

↑ Return to Menu

Phenotypic trait in the context of Taxonomic rank

In biological taxonomy, taxonomic rank (which some authors prefer to call nomenclatural rank because ranking is part of nomenclature rather than taxonomy proper, according to some definitions of these terms) is the relative or absolute level of a group of organisms (a taxon) in a hierarchy that reflects evolutionary relationships. Thus, the most inclusive clades (such as Eukarya and Animalia) have the highest ranks, whereas the least inclusive ones (such as Homo sapiens or Bufo bufo) have the lowest ranks. Ranks can be either relative and be denoted by an indented taxonomy in which the level of indentation reflects the rank, or absolute, in which various terms, such as species, genus, family, order, class, phylum, kingdom, and domain designate rank. This page emphasizes absolute ranks and the rank-based codes (the Zoological Code, the Botanical Code, the Code for Cultivated Plants, the Prokaryotic Code, and the Code for Viruses) require them. However, absolute ranks are not required in all nomenclatural systems for taxonomists; for instance, the PhyloCode, the code of phylogenetic nomenclature, does not require absolute ranks.

Taxa are hierarchical groups of organisms, and their ranks describes their position in this hierarchy. High-ranking taxa (e.g. those considered to be domains or kingdoms, for instance) include more sub-taxa than low-ranking taxa (e.g. those considered genera, species or subspecies). The rank of these taxa reflects inheritance of traits or molecular features from common ancestors. The name of any species and genus are basic; which means that to identify a particular organism, it is usually not necessary to specify names at ranks other than these first two, within a set of taxa covered by a given rank-based code. However, this is not true globally because most rank-based codes are independent from each other, so there are many inter-code homonyms (the same name used for different organisms, often for an animal and for a taxon covered by the botanical code). For this reason, attempts were made at creating a BioCode that would regulate all taxon names, but this attempt has so far failed because of firmly entrenched traditions in each community.

↑ Return to Menu

Phenotypic trait in the context of Cladistic

Cladistics (/kləˈdɪstɪks/ klə-DIST-iks; from Ancient Greek κλάδος kládos 'branch') is an approach to biological classification in which organisms are categorized in groups ("clades") based on hypotheses of most recent common ancestry. The evidence for hypothesized relationships is typically shared derived characteristics (synapomorphies) that are not present in more distant groups and ancestors. However, from an empirical perspective, common ancestors are inferences based on a cladistic hypothesis of relationships of taxa whose character states can be observed. Theoretically, a last common ancestor and all its descendants constitute a (minimal) clade. Importantly, all descendants stay in their overarching ancestral clade. For example, if the terms worms or fishes were used within a strict cladistic framework, these terms would include humans. Many of these terms are normally used paraphyletically, outside of cladistics, e.g. as a 'grade', which are fruitless to precisely delineate, especially when including extinct species. Radiation results in the generation of new subclades by bifurcation, but in practice sexual hybridization may blur very closely related groupings.

As a hypothesis, a clade can be rejected only if some groupings were explicitly excluded. It may then be found that the excluded group did actually descend from the last common ancestor of the group, and thus emerged within the group. ("Evolved from" is misleading, because in cladistics all descendants stay in the ancestral group). To keep only valid clades, upon finding that the group is paraphyletic this way, either such excluded groups should be granted to the clade, or the group should be abolished.

↑ Return to Menu

Phenotypic trait in the context of Selective breeding

Selective breeding (also called artificial selection) is the process by which humans use animal breeding and plant breeding to selectively develop particular phenotypic traits (characteristics) by choosing which typically animal or plant males and females will sexually reproduce and have offspring together. Domesticated animals are known as breeds, normally bred by a professional breeder, while domesticated plants are known as varieties, cultigens, cultivars, or breeds. Two purebred animals of different breeds produce a crossbreed, and crossbred plants are called hybrids. Flowers, vegetables and fruit-trees may be bred by amateurs and commercial or non-commercial professionals: major crops are usually the provenance of the professionals.

In animal breeding artificial selection is often combined with techniques such as inbreeding, linebreeding, and outcrossing. In plant breeding, similar methods are used. Charles Darwin discussed how selective breeding had been successful in producing change over time in his 1859 book, On the Origin of Species. Its first chapter discusses selective breeding and domestication of such animals as pigeons, cats, cattle, and dogs. Darwin used artificial selection as an analogy to propose and explain the theory of natural selection but distinguished the latter from the former as a separate process that is non-directed.

↑ Return to Menu