Phase velocity in the context of Phase (waves)


Phase velocity in the context of Phase (waves)

Phase velocity Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Phase velocity in the context of "Phase (waves)"


⭐ Core Definition: Phase velocity

The phase velocity of a wave is the speed of any wavefront, a surface of constant phase. This is the velocity at which the phase of any constant-frequency component of the wave travels. For such a spectral component, any given phase of the wave (for example, the crest) will appear to travel at the phase velocity. The phase velocity of light waves is not a physically meaningful quantity and is not related to information transfer.

↓ Menu
HINT:

In this Dossier

Phase velocity in the context of Wavelength

In physics and mathematics, wavelength or spatial period of a wave or periodic function is the distance over which the wave's shape repeats. In other words, it is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, troughs, or zero crossings. Wavelength is a characteristic of both traveling waves and standing waves, as well as other spatial wave patterns. The inverse of the wavelength is called the spatial frequency. Wavelength is commonly designated by the Greek letter lambda (λ). For a modulated wave, wavelength may refer to the carrier wavelength of the signal. The term wavelength may also apply to the repeating envelope of modulated waves or waves formed by interference of several sinusoids.

Assuming a sinusoidal wave moving at a fixed wave speed, wavelength is inversely proportional to the frequency of the wave: waves with higher frequencies have shorter wavelengths, and lower frequencies have longer wavelengths.

View the full Wikipedia page for Wavelength
↑ Return to Menu

Phase velocity in the context of Dispersion (optics)

Dispersion is the phenomenon in which the phase velocity of a wave depends on its frequency. Sometimes the term chromatic dispersion is used to refer to optics specifically, as opposed to wave propagation in general. A medium having this common property may be termed a dispersive medium.

Although the term is used in the field of optics to describe light and other electromagnetic waves, dispersion in the same sense can apply to any sort of wave motion such as acoustic dispersion in the case of sound and seismic waves, and in gravity waves (ocean waves). Within optics, dispersion is a property of telecommunication signals along transmission lines (such as microwaves in coaxial cable) or the pulses of light in optical fiber.

View the full Wikipedia page for Dispersion (optics)
↑ Return to Menu

Phase velocity in the context of Capillary wave

A capillary wave is a wave traveling along the phase boundary of a fluid, whose dynamics and phase velocity are dominated by the effects of surface tension.

Capillary waves are common in nature, and are often referred to as ripples. The wavelength of capillary waves on water is typically less than a few centimeters, with a phase speed in excess of 0.2–0.3 meter/second.

View the full Wikipedia page for Capillary wave
↑ Return to Menu

Phase velocity in the context of Wave shoaling

In fluid dynamics, wave shoaling is the effect by which surface waves, entering shallower water, increase in wave height. It is caused by the fact that the group velocity, which is also the wave-energy transport velocity, decreases with water depth. Under stationary conditions, a decrease in transport speed must be compensated by an increase in energy density in order to maintain a constant energy flux. Shoaling waves will also exhibit a reduction in wavelength while the frequency remains constant.

In other words, as the waves approach the shore and the water gets shallower, the waves get taller, slow down, and get closer together.

View the full Wikipedia page for Wave shoaling
↑ Return to Menu

Phase velocity in the context of Cherenkov radiation

Cherenkov radiation (/əˈrɛŋkɒf/) is an electromagnetic radiation emitted when a charged particle (such as an electron) passes through a dielectric medium (such as distilled water) at a speed greater than the phase velocity (speed of propagation of a wavefront in a medium) of light in that medium. A classic example of Cherenkov radiation is the characteristic blue glow of an underwater nuclear reactor. Its cause is similar to the cause of a sonic boom, the sharp sound heard when faster-than-sound movement occurs. The phenomenon is named after Soviet physicist Pavel Cherenkov.

View the full Wikipedia page for Cherenkov radiation
↑ Return to Menu

Phase velocity in the context of Acoustic dispersion

In acoustics, acoustic dispersion is the phenomenon of a sound wave separating into its component frequencies as it passes through a material. The phase velocity of the sound wave is viewed as a function of frequency. Hence, separation of component frequencies is measured by the rate of change in phase velocities as the radiated waves pass through a given medium.

View the full Wikipedia page for Acoustic dispersion
↑ Return to Menu

Phase velocity in the context of Dispersion relation

In the physical sciences and electrical engineering, dispersion relations describe the effect of dispersion on the properties of waves in a medium. A dispersion relation relates the wavelength or wavenumber of a wave to its frequency. Given the dispersion relation, one can calculate the frequency-dependent phase velocity and group velocity of each sinusoidal component of a wave in the medium, as a function of frequency. In addition to the geometry-dependent and material-dependent dispersion relations, the overarching Kramers–Kronig relations describe the frequency-dependence of wave propagation and attenuation.

Dispersion may be caused either by geometric boundary conditions (waveguides, shallow water) or by interaction of the waves with the transmitting medium. Elementary particles, considered as matter waves, have a nontrivial dispersion relation, even in the absence of geometric constraints and other media.

View the full Wikipedia page for Dispersion relation
↑ Return to Menu

Phase velocity in the context of Group velocity

The group velocity of a wave is the velocity with which the overall envelope shape of the wave's amplitudes—known as the modulation or envelope of the wave—propagates through space.

For example, if a stone is thrown into the middle of a very still pond, a circular pattern of waves with a quiescent center appears in the water, also known as a capillary wave. The expanding ring of waves is the wave group or wave packet, within which one can discern individual waves that travel faster than the group as a whole. The amplitudes of the individual waves grow as they emerge from the trailing edge of the group and diminish as they approach the leading edge of the group.

View the full Wikipedia page for Group velocity
↑ Return to Menu