Perpetual motion machines in the context of "First law of thermodynamics"

Play Trivia Questions online!

or

Skip to study material about Perpetual motion machines in the context of "First law of thermodynamics"




⭐ Core Definition: Perpetual motion machines

Perpetual motion is the motion of bodies that continues forever in an unperturbed system. A perpetual motion machine is a hypothetical machine that can do work indefinitely without an external energy source. This kind of machine is impossible, since its existence would violate the first and/or second laws of thermodynamics. These laws of thermodynamics apply regardless of the size of the system. Thus, machines that extract energy from finite sources cannot operate indefinitely because they are driven by the energy stored in the source, which will eventually be exhausted. A common example is devices powered by ocean currents, whose energy is ultimately derived from the Sun, which itself will eventually burn out.

In 2016, new states of matter, time crystals, were discovered in which, on a microscopic scale, the component atoms are in continual repetitive motion, thus satisfying the literal definition of "perpetual motion". However, these do not constitute perpetual motion machines in the traditional sense, or violate thermodynamic laws, because they are in their quantum ground state, so no energy can be extracted from them; they exhibit motion without energy.

↓ Menu

👉 Perpetual motion machines in the context of First law of thermodynamics

The first law of thermodynamics is a formulation of the law of conservation of energy in the context of thermodynamic processes. For a thermodynamic process affecting a thermodynamic system without transfer of matter, the law distinguishes two principal forms of energy transfer, heat and thermodynamic work. The law also defines the internal energy of a system, an extensive property for taking account of the balance of heat transfer, thermodynamic work, and matter transfer, into and out of the system. Energy cannot be created or destroyed, but it can be transformed from one form to another. In an externally isolated system, with internal changes, the sum of all forms of energy is constant.

An equivalent statement is that perpetual motion machines of the first kind are impossible; work done by a system on its surroundings requires that the system's internal energy be consumed, so that the amount of internal energy lost by that work must be resupplied as heat by an external energy source or as work by an external machine acting on the system to sustain the work of the system continuously.

↓ Explore More Topics
In this Dossier