Perfect fluid in the context of Friedmann equation


Perfect fluid in the context of Friedmann equation

Perfect fluid Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Perfect fluid in the context of "Friedmann equation"


⭐ Core Definition: Perfect fluid

In physics, a perfect fluid or ideal fluid is a fluid that can be completely characterized by its rest frame mass density and isotropic pressure . Real fluids are viscous ("sticky") and contain (and conduct) heat. Perfect fluids are idealized models in which these possibilities are ignored. Specifically, perfect fluids have no shear stresses, viscosity, or heat conduction. A quark–gluon plasmaand graphene are examples of nearly perfect fluids that could be studied in a laboratory.

↓ Menu
HINT:

In this Dossier

Perfect fluid in the context of Friedmann equations

The Friedmann equations, also known as the Friedmann–Lemaître (FL) equations, are a set of equations in physical cosmology that govern cosmic expansion in homogeneous and isotropic models of the universe within the context of general relativity. They were first derived by Alexander Friedmann in 1922 from Einstein's field equations of gravitation for the Friedmann–Lemaître–Robertson–Walker metric and a perfect fluid with a given mass density ρ and pressure p. The equations for negative spatial curvature were given by Friedmann in 1924.The physical models built on the Friedmann equations are called FRW or FLRW models and form the Standard Model of modern cosmology, although such a description is also associated with the further developed Lambda-CDM model. The FLRW model was developed independently by the named authors in the 1920s and 1930s.

View the full Wikipedia page for Friedmann equations
↑ Return to Menu

Perfect fluid in the context of Equation of state (cosmology)

In cosmology, the equation of state of a perfect fluid is characterized by a dimensionless number , equal to the ratio of its pressure to its energy density : It is closely related to the thermodynamic equation of state and ideal gas law.

View the full Wikipedia page for Equation of state (cosmology)
↑ Return to Menu

Perfect fluid in the context of Schwarzschild coordinates

In the theory of Lorentzian manifolds, spherically symmetric spacetimes admit a family of nested round spheres. In such a spacetime, a particularly important kind of coordinate chart is the Schwarzschild chart, a kind of polar spherical coordinate chart on a static and spherically symmetric spacetime, which is adapted to these nested round spheres. The defining characteristic of Schwarzschild chart is that the radial coordinate possesses a natural geometric interpretation in terms of the surface area and Gaussian curvature of each sphere. However, radial distances and angles are not accurately represented.

These charts have many applications in metric theories of gravitation such as general relativity. They are most often used in static spherically symmetric spacetimes. In the case of general relativity, Birkhoff's theorem states that every isolated spherically symmetric vacuum or electrovacuum solution of the Einstein field equation is static, but this is certainly not true for perfect fluids. The extension of the exterior region of the Schwarzschild vacuum solution inside the event horizon of a spherically symmetric black hole is not static inside the horizon, and the family of (spacelike) nested spheres cannot be extended inside the horizon, so the Schwarzschild chart for this solution necessarily breaks down at the horizon.

View the full Wikipedia page for Schwarzschild coordinates
↑ Return to Menu