Schwarzschild coordinates in the context of Perfect fluid


Schwarzschild coordinates in the context of Perfect fluid

Schwarzschild coordinates Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Schwarzschild coordinates in the context of "Perfect fluid"


⭐ Core Definition: Schwarzschild coordinates

In the theory of Lorentzian manifolds, spherically symmetric spacetimes admit a family of nested round spheres. In such a spacetime, a particularly important kind of coordinate chart is the Schwarzschild chart, a kind of polar spherical coordinate chart on a static and spherically symmetric spacetime, which is adapted to these nested round spheres. The defining characteristic of Schwarzschild chart is that the radial coordinate possesses a natural geometric interpretation in terms of the surface area and Gaussian curvature of each sphere. However, radial distances and angles are not accurately represented.

These charts have many applications in metric theories of gravitation such as general relativity. They are most often used in static spherically symmetric spacetimes. In the case of general relativity, Birkhoff's theorem states that every isolated spherically symmetric vacuum or electrovacuum solution of the Einstein field equation is static, but this is certainly not true for perfect fluids. The extension of the exterior region of the Schwarzschild vacuum solution inside the event horizon of a spherically symmetric black hole is not static inside the horizon, and the family of (spacelike) nested spheres cannot be extended inside the horizon, so the Schwarzschild chart for this solution necessarily breaks down at the horizon.

↓ Menu
HINT:

In this Dossier

Schwarzschild coordinates in the context of Karl Schwarzschild

Karl Schwarzschild (German: [kaʁl ˈʃvaʁtsʃɪlt] ; 9 October 1873 – 11 May 1916) was a German physicist and astronomer.

Schwarzschild provided the first exact solution to the Einstein field equations of general relativity, for the limited case of a single spherical non-rotating mass, which he accomplished in 1915, the same year that Einstein first introduced general relativity. The Schwarzschild solution, which makes use of Schwarzschild coordinates and the Schwarzschild metric, leads to a derivation of the Schwarzschild radius, which is the size of the event horizon of a non-rotating black hole.

View the full Wikipedia page for Karl Schwarzschild
↑ Return to Menu