Pelagic red clay in the context of "Zeolite"

Play Trivia Questions online!

or

Skip to study material about Pelagic red clay in the context of "Zeolite"

Ad spacer

⭐ Core Definition: Pelagic red clay

Pelagic red clay, also known as simply red clay, brown clay or pelagic clay, is a type of pelagic sediment.

Pelagic clay accumulates in the deepest and most remote areas of the ocean. It covers 38% of the ocean floor and accumulates more slowly than any other sediment type, at only 0.1–0.5 cm/1000 yr. Containing less than 30% biogenic material, it consists of sediment that remains after the dissolution of both calcareous and siliceous biogenic particles while they settled through the water column. These sediments consist of eolian quartz, clay minerals, volcanic ash, subordinate residue of siliceous microfossils, and authigenic minerals such as zeolites, limonite and manganese oxides. The bulk of red clay consists of eolian dust. Accessory constituents found in red clay include meteorite dust, fish bones and teeth, whale ear bones, and manganese micro-nodules.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Pelagic red clay in the context of Pelagic sediments

Pelagic sediment or pelagite is a fine-grained sediment that accumulates as the result of the settling of particles to the floor of the open ocean, far from land. These particles consist primarily of either the microscopic, calcareous or siliceous shells of phytoplankton or zooplankton; clay-size siliciclastic sediment; or some mixture of these, along with detritus (marine snow) included. Trace amounts of meteoric dust and variable amounts of volcanic ash also occur within pelagic sediments. Based upon the composition of the ooze, there are three main types of pelagic sediments: siliceous oozes, calcareous oozes, and red clays.

The composition of pelagic sediments is controlled by three main factors. The first factor is the distance from major landmasses, which affects their dilution by terrigenous, or land-derived, sediment. The second factor is water depth, which affects the preservation of both siliceous and calcareous biogenic particles as they settle to the ocean bottom. The final factor is ocean fertility, which controls the amount of biogenic particles produced in surface waters.

↑ Return to Menu