Partial sum in the context of Formal power series


Partial sum in the context of Formal power series

Partial sum Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Partial sum in the context of "Formal power series"


⭐ Core Definition: Partial sum

In mathematics, a series is, roughly speaking, an addition of infinitely many terms, one after the other. The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathematics, even for studying finite structures in combinatorics through generating functions. The mathematical properties of infinite series make them widely applicable in other quantitative disciplines such as physics, computer science, statistics and finance.

Among the Ancient Greeks, the idea that a potentially infinite summation could produce a finite result was considered paradoxical, most famously in Zeno's paradoxes. Nonetheless, infinite series were applied practically by Ancient Greek mathematicians including Archimedes, for instance in the quadrature of the parabola. The mathematical side of Zeno's paradoxes was resolved using the concept of a limit during the 17th century, especially through the early calculus of Isaac Newton. The resolution was made more rigorous and further improved in the 19th century through the work of Carl Friedrich Gauss and Augustin-Louis Cauchy, among others, answering questions about which of these sums exist via the completeness of the real numbers and whether series terms can be rearranged or not without changing their sums using absolute convergence and conditional convergence of series.

↓ Menu
HINT:

👉 Partial sum in the context of Formal power series

In mathematics, a formal series is an infinite sum that is considered independently from any notion of convergence, and can be manipulated with the usual algebraic operations on series (addition, subtraction, multiplication, division, partial sums, etc.).

A formal power series is a special kind of formal series, of the form where the called coefficients, are numbers or, more generally, elements of some ring, and the are formal powers of the symbol that is called an indeterminate or, commonly, a variable. Hence, formal power series can be viewed as a generalization of polynomials where the number of terms is allowed to be infinite, and differ from usual power series by the absence of convergence requirements, which implies that a formal power series may not represent a function of its variables. Formal power series are in one to one correspondence with their sequences of coefficients, but the two concepts must not be confused, since the operations that can be applied are different.

↓ Explore More Topics
In this Dossier

Partial sum in the context of Convergence (mathematics)

In mathematics, a series is the sum of the terms of an infinite sequence of numbers. More precisely, an infinite sequence defines a series S that is denoted

The nth partial sum Sn is the sum of the first n terms of the sequence; that is,

View the full Wikipedia page for Convergence (mathematics)
↑ Return to Menu

Partial sum in the context of Taylor series

In mathematical analysis, the Taylor series or Taylor expansion of a function is an infinite sum of terms that are expressed in terms of the function's derivatives at a single point. For most common functions, the function and the sum of its Taylor series are equal near this point. Taylor series are named after Brook Taylor, who introduced them in 1715. A Taylor series is also called a Maclaurin series when 0 is the point where the derivatives are considered, after Colin Maclaurin, who made extensive use of this special case of Taylor series in the 18th century.

The partial sum formed by the first n + 1 terms of a Taylor series is a polynomial of degree n that is called the nth Taylor polynomial of the function. Taylor polynomials are approximations of a function, which become generally more accurate as n increases. Taylor's theorem gives quantitative estimates on the error introduced by the use of such approximations. If the Taylor series of a function is convergent, its sum is the limit of the infinite sequence of the Taylor polynomials. A function may differ from the sum of its Taylor series, even if its Taylor series is convergent. A function is analytic at a point x if it is equal to the sum of its Taylor series in some open interval (or open disk in the complex plane) containing x. This implies that the function is analytic at every point of the interval (or disk).

View the full Wikipedia page for Taylor series
↑ Return to Menu

Partial sum in the context of Logarithmic growth

In mathematics, logarithmic growth describes a phenomenon whose size or cost can be described as a logarithm function of some input. e.g. y = C log (x). Any logarithm base can be used, since one can be converted to another by multiplying by a fixed constant. Logarithmic growth is the inverse of exponential growth and is very slow.

A familiar example of logarithmic growth is a number, N, in positional notation, which grows as logb (N), where b is the base of the number system used, e.g. 10 for decimal arithmetic. In more advanced mathematics, the partial sums of the harmonic series

View the full Wikipedia page for Logarithmic growth
↑ Return to Menu

Partial sum in the context of Series expansion

In mathematics, a series expansion is a technique that expresses a function as an infinite sum, or series, of simpler functions. It is a method for calculating a function that cannot be expressed by just elementary operators (addition, subtraction, multiplication and division).

The resulting so-called series often can be limited to a finite number of terms, thus yielding an approximation of the function. The fewer terms of the sequence are used, the simpler this approximation will be. Often, the resulting inaccuracy (i.e., the partial sum of the omitted terms) can be described by an equation involving Big O notation (see also asymptotic expansion). The series expansion on an open interval will also be an approximation for non-analytic functions.

View the full Wikipedia page for Series expansion
↑ Return to Menu

Partial sum in the context of Divergent series

In mathematics, a divergent series is an infinite series that is not convergent, meaning that the infinite sequence of the partial sums of the series does not have a finite limit.

If a series converges, the individual terms of the series must approach zero. Thus any series in which the individual terms do not approach zero diverges. However, convergence is a stronger condition: not all series whose terms approach zero converge. A counterexample is the harmonic series

View the full Wikipedia page for Divergent series
↑ Return to Menu