Partial pressure in the context of "Lime kiln"

Play Trivia Questions online!

or

Skip to study material about Partial pressure in the context of "Lime kiln"

Ad spacer

⭐ Core Definition: Partial pressure

In a mixture of gases, each constituent gas has a partial pressure which is the notional pressure of that constituent gas as if it alone occupied the entire volume of the original mixture at the same temperature. The total pressure of an ideal gas mixture is the sum of the partial pressures of the gases in the mixture (Dalton's Law).

In respiratory physiology, the partial pressure of a dissolved gas in liquid (such as oxygen in arterial blood) is also defined as the partial pressure of that gas as it would be undissolved in gas phase yet in equilibrium with the liquid. This concept is also known as blood gas tension. In this sense, the diffusion of a gas liquid is said to be driven by differences in partial pressure (not concentration). In chemistry and thermodynamics, this concept is generalized to non-ideal gases and instead called fugacity. The partial pressure of a gas is a measure of its thermodynamic activity. Gases dissolve, diffuse, and react according to their partial pressures and not according to their concentrations in a gas mixture or as a solute in solution. This general property of gases is also true in chemical reactions of gases in biology.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Partial pressure in the context of Lime kiln

A lime kiln is a kiln used for the calcination of limestone (calcium carbonate) to produce the form of lime called quicklime (calcium oxide). The chemical equation for this reaction is: CaCO3 + heat → CaO + CO2

This reaction can take place at anywhere above 840 °C (1,540 °F), but is generally considered to occur at 900 °C (1,650 °F) (at which temperature the partial pressure of CO2 is 1 atmosphere), but a temperature around 1,000 °C (1,830 °F) (at which temperature the partial pressure of CO2 is 3.8 atmospheres) is usually used to make the reaction proceed quickly. Excessive temperature is avoided because it produces unreactive, "dead-burned" lime.

↓ Explore More Topics
In this Dossier

Partial pressure in the context of Vapor

In physics, a vapor (American English) or vapour (Commonwealth English; see spelling differences) is a substance in the gas phase at a temperature lower than its critical temperature, which means that the vapor can be condensed to a liquid by increasing the pressure on it without reducing the temperature of the vapor. A vapor is different from an aerosol. An aerosol is a suspension of tiny particles of liquid, solid, or both within a gas.

For example, water has a critical temperature of 647 K (374 °C; 705 °F), which is the highest temperature at which liquid water can exist at any pressure. In the atmosphere at ordinary temperatures gaseous water (known as water vapor) will condense into a liquid if its partial pressure is increased sufficiently.

↑ Return to Menu

Partial pressure in the context of Saturated fluid

In thermodynamics and chemical engineering, the vapor–liquid equilibrium (VLE) describes the distribution of a chemical species between the vapor phase and a liquid phase.

The concentration of a vapor in contact with its liquid, especially at equilibrium, is often expressed in terms of vapor pressure, which will be a partial pressure (a part of the total gas pressure) if any other gas(es) are present with the vapor. The equilibrium vapor pressure of a liquid is in general strongly dependent on temperature. At vapor–liquid equilibrium, a liquid with individual components in certain concentrations will have an equilibrium vapor in which the concentrations or partial pressures of the vapor components have certain values depending on all of the liquid component concentrations and the temperature. The converse is also true: if a vapor with components at certain concentrations or partial pressures is in vapor–liquid equilibrium with its liquid, then the component concentrations in the liquid will be determined dependent on the vapor concentrations and on the temperature. The equilibrium concentration of each component in the liquid phase is often different from its concentration (or vapor pressure) in the vapor phase, but there is a relationship. The VLE concentration data can be determined experimentally or approximated with the help of theories such as Raoult's law, Dalton's law, and Henry's law.

↑ Return to Menu

Partial pressure in the context of Law of partial pressures

Dalton's law (also called Dalton's law of partial pressures) states that in a mixture of non-reacting gases, the total pressure exerted is equal to the sum of the partial pressures of the individual gases. This empirical law was observed by John Dalton in 1801 and published in 1802. Dalton's law is related to the ideal gas laws.

↑ Return to Menu

Partial pressure in the context of Raoult's law

Raoult's law (/ˈrɑːlz/ law) is a relation of physical chemistry, with implications in thermodynamics. Proposed by French chemist François-Marie Raoult in 1887, it states that the partial pressure of each component of an ideal mixture of liquids is equal to the vapor pressure of the pure component (liquid or solid) multiplied by its mole fraction in the mixture. In consequence, the relative lowering of vapor pressure of a dilute solution of nonvolatile solute is equal to the mole fraction of solute in the solution.

Mathematically, Raoult's law for a single component in an ideal solution is stated as

↑ Return to Menu

Partial pressure in the context of Respiratory failure

Respiratory failure results from inadequate gas exchange by the respiratory system, meaning that the arterial oxygen, carbon dioxide, or both cannot be kept at normal levels. A drop in the oxygen carried in the blood is known as hypoxemia; a rise in arterial carbon dioxide levels is called hypercapnia. Respiratory failure is classified as either Type 1 or Type 2, based on whether there is a high carbon dioxide level, and can be acute or chronic. In clinical trials, the definition of respiratory failure usually includes increased respiratory rate, abnormal blood gases (hypoxemia, hypercapnia, or both), and evidence of increased work of breathing. Respiratory failure causes an altered state of consciousness due to ischemia in the brain.

The typical partial pressure reference values are oxygen Pa O
2
more than 80 mmHg (11 kPa) and carbon dioxide Pa CO2 less than 45 mmHg (6.0 kPa).

↑ Return to Menu

Partial pressure in the context of Perm (unit)

A perm is a unit of permeance or "water vapor transmission" given a certain differential in partial pressures on either side of a material or membrane.

↑ Return to Menu

Partial pressure in the context of Decompression (diving)

The decompression of a diver is the reduction in ambient pressure experienced during ascent from depth or depressurisation of a diving chamber. It is also the process of elimination of dissolved metabolically inert gases from the diver's body tissues which accumulated during the dive. Gas elimination also occurs during pauses in the ascent known as decompression stops, where the pressure is held constant, and after surfacing, until the gas concentrations reach equilibrium. Divers breathing gas at ambient pressure need to ascend at a rate determined by their recent exposure to pressure and the breathing gas in use. A diver who only breathes gas at atmospheric pressure when free-diving or snorkelling will not usually need to decompress. Divers using an atmospheric diving suit do not need to decompress as they are never exposed to high ambient pressure.

When an ambient pressure diver descends in the water, the hydrostatic pressure, and therefore the ambient pressure, rises. Because breathing gas is supplied at ambient pressure, some of this gas dissolves into the diver's blood and is transferred by the blood to other tissues where it may accumulate by diffusion. Inert gas such as nitrogen or helium continues to be taken up until the gas dissolved in the diver is in a state of equilibrium with the breathing gas in the diver's lungs, at which point the diver is saturated for that depth and breathing mixture, or the depth, and therefore the pressure, is changed, or the partial pressures of the gases are changed by modifying the breathing gas mixture. During ascent, the ambient pressure is reduced, and at some stage the inert gases dissolved in any given tissue will be at a higher concentration than the equilibrium state and start to diffuse out again to the blood and be eliminated in the lungs. If the pressure reduction is sufficient, excess gas may form bubbles, which may lead to decompression sickness, a possibly debilitating or life-threatening condition. It is essential that divers manage their decompression to avoid excessive bubble formation and decompression sickness. A mismanaged decompression usually results from reducing the ambient pressure too quickly for the amount of gas in solution to be eliminated safely. These bubbles may block arterial blood supply to tissues or directly cause tissue damage. If the decompression is effective, the asymptomatic venous microbubbles present after most dives are eliminated from the diver's body in the alveolar capillary beds of the lungs. If they are not given enough time, or more bubbles are created than can be eliminated safely, the bubbles grow in size and number causing the symptoms and injuries of decompression sickness. The immediate goal of controlled decompression is to avoid development of symptoms of bubble formation in the tissues of the diver, and the long-term goal is to avoid complications due to sub-clinical decompression injury.

↑ Return to Menu