Parallelogram in the context of "Base (geometry)"

Play Trivia Questions online!

or

Skip to study material about Parallelogram in the context of "Base (geometry)"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<

👉 Parallelogram in the context of Base (geometry)

In geometry, a base is a side of a polygon or a face of a polyhedron, particularly one oriented perpendicular to the direction in which height is measured, or on what is considered to be the "bottom" of the figure. This term is commonly applied in plane geometry to triangles, parallelograms, trapezoids, and in solid geometry to cylinders, cones, pyramids, parallelepipeds, prisms, and frustums.

The side or point opposite the base is often called the apex or summit of the shape.

↓ Explore More Topics
In this Dossier

Parallelogram in the context of Shear stress

Shear stress (often denoted by τ, Greek: tau) is the component of stress coplanar with a material cross section. It arises from the shear force, the component of force vector parallel to the material cross section. Normal stress, on the other hand, arises from the force vector component perpendicular to the material cross section on which it acts.

↑ Return to Menu

Parallelogram in the context of Parallelepipeds

In geometry, a parallelepiped is a three-dimensional figure formed by six parallelograms (the term rhomboid is also sometimes used with this meaning). By analogy, it relates to a parallelogram just as a cube relates to a square.

Three equivalent definitions of parallelepiped are

↑ Return to Menu

Parallelogram in the context of Rectangle

In Euclidean plane geometry, a rectangle is a rectilinear convex polygon or a quadrilateral with four right angles. It can also be defined as: an equiangular quadrilateral, since equiangular means that all of its angles are equal (360°/4 = 90°); or a parallelogram containing a right angle. A rectangle with four sides of equal length is a square. The term "oblong" is used to refer to a non-square rectangle. A rectangle with vertices ABCD would be denoted as  ABCD.

The word rectangle comes from the Latin rectangulus, which is a combination of rectus (as an adjective, right, proper) and angulus (angle).

↑ Return to Menu

Parallelogram in the context of Rhombus

In geometry, a rhombus (pl.: rhombi or rhombuses) is an equilateral quadrilateral, a quadrilateral whose four sides all have the same length. Other names for rhombus include diamond, lozenge, and calisson.

Every rhombus is a simple polygon (having no self-intersections). A rhombus is a special case of a parallelogram and a kite. A rhombus with right angles is a square. A non-square rhombus has two opposite acute angles and two opposite obtuse angles.

↑ Return to Menu

Parallelogram in the context of Pantograph

A pantograph (from Greek παντ- 'all, every' and γραφ- 'to write', from their original use for copying writing) is a mechanical linkage connected in a manner based on parallelograms so that the movement of one pen, in tracing an image, produces identical movements in a second pen. If a line drawing is traced by the first point, an identical, enlarged, or miniaturized copy will be drawn by a pen fixed to the other. Using the same principle, different kinds of pantographs are used for other forms of duplication in areas such as sculpting, minting, engraving, and milling.

↑ Return to Menu

Parallelogram in the context of Area of a triangle

In geometry, calculating the area of a triangle is an elementary problem encountered often in many different situations. The best known and simplest formula is where b is the length of the base of the triangle, and h is the height or altitude of the triangle. The term "base" denotes any side, and "height" denotes the length of a perpendicular from the vertex opposite the base onto the line containing the base. Euclid proved that the area of a triangle is half that of a parallelogram with the same base and height in his book Elements in 300 BCE. In 499 CE Aryabhata, used this illustrated method in the Aryabhatiya (section 2.6).

Although simple, this formula is only useful if the height can be readily found, which is not always the case. For example, the land surveyor of a triangular field might find it relatively easy to measure the length of each side, but relatively difficult to construct a 'height'. Various methods may be used in practice, depending on what is known about the triangle. Other frequently used formulas for the area of a triangle use trigonometry, side lengths (Heron's formula), vectors, coordinates, line integrals, Pick's theorem, or other properties.

↑ Return to Menu

Parallelogram in the context of Prism (geometry)

In geometry, a prism is a polyhedron comprising an n-sided polygon base, a second base which is a translated copy (rigidly moved without rotation) of the first, and n other faces, necessarily all parallelograms, joining corresponding sides of the two bases. All cross-sections parallel to the bases are translations of the bases. Prisms are named after their bases, e.g. a prism with a pentagonal base is called a pentagonal prism. Prisms are a subclass of prismatoids.

Like many basic geometric terms, the word prism (from Greek πρίσμα (prisma) 'something sawed') was first used in Euclid's Elements. Euclid defined the term in Book XI as "a solid figure contained by two opposite, equal and parallel planes, while the rest are parallelograms". However, this definition has been criticized for not being specific enough in regard to the nature of the bases (a cause of some confusion amongst generations of later geometry writers).

↑ Return to Menu

Parallelogram in the context of Cuboid

In geometry, a cuboid is a hexahedron with quadrilateral faces, meaning it is a polyhedron with six faces; it has eight vertices and twelve edges. A rectangular cuboid (sometimes also called a "cuboid") has all right angles and equal opposite rectangular faces. Etymologically, "cuboid" means "like a cube", in the sense of a convex solid which can be transformed into a cube (by adjusting the lengths of its edges and the angles between its adjacent faces). A cuboid is a convex polyhedron whose polyhedral graph is the same as that of a cube.

General cuboids have many different types. When all of the rectangular cuboid's edges are equal in length, it results in a cube, with six square faces and adjacent faces meeting at right angles. Along with the rectangular cuboids, parallelepiped is a cuboid with six parallelogram faces. Rhombohedron is a cuboid with six rhombus faces. A square frustum is a frustum with a square base, but the rest of its faces are quadrilaterals; the square frustum is formed by truncating the apex of a square pyramid.In attempting to classify cuboids by their symmetries, Robertson (1983) found that there were at least 22 different cases, "of which only about half are familiar in the shapes of everyday objects".

↑ Return to Menu