Parallelogram in the context of Area of a triangle


Parallelogram in the context of Area of a triangle

Parallelogram Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Parallelogram in the context of "Area of a triangle"


⭐ Core Definition: Parallelogram

In Euclidean geometry, a parallelogram is a simple (non-self-intersecting) quadrilateral with two pairs of parallel sides. The opposite or facing sides of a parallelogram are of equal length and the opposite angles of a parallelogram are of equal measure. The congruence of opposite sides and opposite angles is a direct consequence of the Euclidean parallel postulate and neither condition can be proven without appealing to the Euclidean parallel postulate or one of its equivalent formulations.

By comparison, a quadrilateral with at least one pair of parallel sides is a trapezoid in American English or a trapezium in British English.

↓ Menu
HINT:

👉 Parallelogram in the context of Area of a triangle

In geometry, calculating the area of a triangle is an elementary problem encountered often in many different situations. The best known and simplest formula is where b is the length of the base of the triangle, and h is the height or altitude of the triangle. The term "base" denotes any side, and "height" denotes the length of a perpendicular from the vertex opposite the base onto the line containing the base. Euclid proved that the area of a triangle is half that of a parallelogram with the same base and height in his book Elements in 300 BCE. In 499 CE Aryabhata, used this illustrated method in the Aryabhatiya (section 2.6).

Although simple, this formula is only useful if the height can be readily found, which is not always the case. For example, the land surveyor of a triangular field might find it relatively easy to measure the length of each side, but relatively difficult to construct a 'height'. Various methods may be used in practice, depending on what is known about the triangle. Other frequently used formulas for the area of a triangle use trigonometry, side lengths (Heron's formula), vectors, coordinates, line integrals, Pick's theorem, or other properties.

↓ Explore More Topics
In this Dossier

Parallelogram in the context of Shear stress

Shear stress (often denoted by τ, Greek: tau) is the component of stress coplanar with a material cross section. It arises from the shear force, the component of force vector parallel to the material cross section. Normal stress, on the other hand, arises from the force vector component perpendicular to the material cross section on which it acts.

View the full Wikipedia page for Shear stress
↑ Return to Menu

Parallelogram in the context of Parallelepipeds

In geometry, a parallelepiped is a three-dimensional figure formed by six parallelograms (the term rhomboid is also sometimes used with this meaning). By analogy, it relates to a parallelogram just as a cube relates to a square.

Three equivalent definitions of parallelepiped are

View the full Wikipedia page for Parallelepipeds
↑ Return to Menu

Parallelogram in the context of Rectangle

In Euclidean plane geometry, a rectangle is a rectilinear convex polygon or a quadrilateral with four right angles. It can also be defined as: an equiangular quadrilateral, since equiangular means that all of its angles are equal (360°/4 = 90°); or a parallelogram containing a right angle. A rectangle with four sides of equal length is a square. The term "oblong" is used to refer to a non-square rectangle. A rectangle with vertices ABCD would be denoted as  ABCD.

The word rectangle comes from the Latin rectangulus, which is a combination of rectus (as an adjective, right, proper) and angulus (angle).

View the full Wikipedia page for Rectangle
↑ Return to Menu

Parallelogram in the context of Rhombus

In geometry, a rhombus (pl.: rhombi or rhombuses) is an equilateral quadrilateral, a quadrilateral whose four sides all have the same length. Other names for rhombus include diamond, lozenge, and calisson.

Every rhombus is a simple polygon (having no self-intersections). A rhombus is a special case of a parallelogram and a kite. A rhombus with right angles is a square. A non-square rhombus has two opposite acute angles and two opposite obtuse angles.

View the full Wikipedia page for Rhombus
↑ Return to Menu

Parallelogram in the context of Pantograph

A pantograph (from Greek παντ- 'all, every' and γραφ- 'to write', from their original use for copying writing) is a mechanical linkage connected in a manner based on parallelograms so that the movement of one pen, in tracing an image, produces identical movements in a second pen. If a line drawing is traced by the first point, an identical, enlarged, or miniaturized copy will be drawn by a pen fixed to the other. Using the same principle, different kinds of pantographs are used for other forms of duplication in areas such as sculpting, minting, engraving, and milling.

View the full Wikipedia page for Pantograph
↑ Return to Menu

Parallelogram in the context of Base (geometry)

In geometry, a base is a side of a polygon or a face of a polyhedron, particularly one oriented perpendicular to the direction in which height is measured, or on what is considered to be the "bottom" of the figure. This term is commonly applied in plane geometry to triangles, parallelograms, trapezoids, and in solid geometry to cylinders, cones, pyramids, parallelepipeds, prisms, and frustums.

The side or point opposite the base is often called the apex or summit of the shape.

View the full Wikipedia page for Base (geometry)
↑ Return to Menu

Parallelogram in the context of Prism (geometry)

In geometry, a prism is a polyhedron comprising an n-sided polygon base, a second base which is a translated copy (rigidly moved without rotation) of the first, and n other faces, necessarily all parallelograms, joining corresponding sides of the two bases. All cross-sections parallel to the bases are translations of the bases. Prisms are named after their bases, e.g. a prism with a pentagonal base is called a pentagonal prism. Prisms are a subclass of prismatoids.

Like many basic geometric terms, the word prism (from Greek πρίσμα (prisma) 'something sawed') was first used in Euclid's Elements. Euclid defined the term in Book XI as "a solid figure contained by two opposite, equal and parallel planes, while the rest are parallelograms". However, this definition has been criticized for not being specific enough in regard to the nature of the bases (a cause of some confusion amongst generations of later geometry writers).

View the full Wikipedia page for Prism (geometry)
↑ Return to Menu

Parallelogram in the context of Cuboid

In geometry, a cuboid is a hexahedron with quadrilateral faces, meaning it is a polyhedron with six faces; it has eight vertices and twelve edges. A rectangular cuboid (sometimes also called a "cuboid") has all right angles and equal opposite rectangular faces. Etymologically, "cuboid" means "like a cube", in the sense of a convex solid which can be transformed into a cube (by adjusting the lengths of its edges and the angles between its adjacent faces). A cuboid is a convex polyhedron whose polyhedral graph is the same as that of a cube.

General cuboids have many different types. When all of the rectangular cuboid's edges are equal in length, it results in a cube, with six square faces and adjacent faces meeting at right angles. Along with the rectangular cuboids, parallelepiped is a cuboid with six parallelogram faces. Rhombohedron is a cuboid with six rhombus faces. A square frustum is a frustum with a square base, but the rest of its faces are quadrilaterals; the square frustum is formed by truncating the apex of a square pyramid.In attempting to classify cuboids by their symmetries, Robertson (1983) found that there were at least 22 different cases, "of which only about half are familiar in the shapes of everyday objects".

View the full Wikipedia page for Cuboid
↑ Return to Menu

Parallelogram in the context of Monoclinic crystal system

In crystallography, the monoclinic crystal system is one of the seven crystal systems. A crystal system is described by three vectors. In the monoclinic system, the crystal is described by vectors of unequal lengths, as in the orthorhombic system. They form a parallelogram prism. Hence two pairs of vectors are perpendicular (meet at right angles), while the third pair makes an angle other than 90°.

View the full Wikipedia page for Monoclinic crystal system
↑ Return to Menu

Parallelogram in the context of Cross product

In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here ), and is denoted by the symbol . Given two linearly independent vectors a and b, the cross product, a × b (read "a cross b"), is a vector that is perpendicular to both a and b, and thus normal to the plane containing them. It has many applications in mathematics, physics, engineering, and computer programming. It should not be confused with the dot product (projection product).

The magnitude of the cross product equals the area of a parallelogram with the vectors for sides; in particular, the magnitude of the product of two perpendicular vectors is the product of their lengths. The units of the cross-product are the product of the units of each vector. If two vectors are parallel or are anti-parallel (that is, they are linearly dependent), or if either one has zero length, then their cross product is zero.

View the full Wikipedia page for Cross product
↑ Return to Menu

Parallelogram in the context of Unit cell

In geometry, biology, mineralogy and solid state physics, a unit cell is a repeating unit formed by the vectors spanning the points of a lattice. Despite its suggestive name, the unit cell (unlike a unit vector, for example) does not necessarily have unit size, or even a particular size at all. Rather, the primitive cell is the closest analogy to a unit vector, since it has a determined size for a given lattice and is the basic building block from which larger cells are constructed.

The concept is used particularly in describing crystal structure in two and three dimensions, though it makes sense in all dimensions. A lattice can be characterized by the geometry of its unit cell, which is a section of the tiling (a parallelogram or parallelepiped) that generates the whole tiling using only translations.

View the full Wikipedia page for Unit cell
↑ Return to Menu

Parallelogram in the context of Trapezoid

In geometry, a trapezoid (/ˈtræpəzɔɪd/) in North American English, or trapezium (/trəˈpziəm/) in British English, is a quadrilateral that has at least one pair of parallel sides.

The parallel sides are called the bases of the trapezoid. The other two sides are called the legs or lateral sides. If the trapezoid is a parallelogram, then the choice of bases and legs is arbitrary.

View the full Wikipedia page for Trapezoid
↑ Return to Menu

Parallelogram in the context of Prismatoid

In geometry, a prismatoid is a convex polyhedron whose vertices all lie in two parallel planes. Its lateral faces can be trapezoids or triangles. If both planes have the same number of vertices, and the lateral faces are either parallelograms or trapezoids, it is called a prismoid.

View the full Wikipedia page for Prismatoid
↑ Return to Menu

Parallelogram in the context of Exterior algebra

In mathematics, the exterior algebra or Grassmann algebra of a vector space is an associative algebra that contains which has a product, called exterior product or wedge product and denoted with , such that for every vector in The exterior algebra is named after Hermann Grassmann, and the names of the product come from the "wedge" symbol and the fact that the product of two elements of is "outside"

The wedge product of vectors is called a blade of degree or -blade. The wedge product was introduced originally as an algebraic construction used in geometry to study areas, volumes, and their higher-dimensional analogues: the magnitude of a 2-blade is the area of the parallelogram defined by and and, more generally, the magnitude of a -blade is the (hyper)volume of the parallelotope defined by the constituent vectors. Its bilinearity, expected from such a generalization of volume, and its alternating property that implies a skew-symmetric property that and more generally any blade flips sign whenever two of its constituent vectors are exchanged, corresponding to a parallelotope of opposite orientation.

View the full Wikipedia page for Exterior algebra
↑ Return to Menu