Orthogonal vectors in the context of "Orthogonality"

Play Trivia Questions online!

or

Skip to study material about Orthogonal vectors in the context of "Orthogonality"

Ad spacer

⭐ Core Definition: Orthogonal vectors

In mathematics, an inner product space is a real or complex vector space endowed with an operation called an inner product. The inner product of two vectors in the space is a scalar, often denoted with angle brackets such as in . Inner products allow formal definitions of intuitive geometric notions, such as lengths, angles, and orthogonality (zero inner product) of vectors. Inner product spaces generalize Euclidean vector spaces, in which the inner product is the dot product or scalar product of Cartesian coordinates. Inner product spaces of infinite dimensions are widely used in functional analysis. Inner product spaces over the field of complex numbers are sometimes referred to as unitary spaces. The first usage of the concept of a vector space with an inner product is due to Giuseppe Peano, in 1898.

An inner product naturally induces an associated norm, (denoted and in the picture); so, every inner product space is a normed vector space. If this normed space is also complete (that is, a Banach space) then the inner product space is a Hilbert space. If an inner product space H is not a Hilbert space, it can be extended by completion to a Hilbert space This means that is a linear subspace of the inner product of is the restriction of that of and is dense in for the topology defined by the norm.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Orthogonal vectors in the context of Orthogonality

Orthogonality is a term with various meanings depending on the context.

In mathematics, orthogonality is the generalization of the geometric notion of perpendicularity. Although many authors use the two terms perpendicular and orthogonal interchangeably, the term perpendicular is more specifically used for lines and planes that intersect to form a right angle, whereas orthogonal is used in generalizations, such as orthogonal vectors or orthogonal curves.

↓ Explore More Topics
In this Dossier