Ornithopter in the context of "Fixed-wing aircraft"

Play Trivia Questions online!

or

Skip to study material about Ornithopter in the context of "Fixed-wing aircraft"

Ad spacer

⭐ Core Definition: Ornithopter

An ornithopter (from Ancient Greek ὄρνις (órnis) 'bird' and πτερόν (pterón) 'wing') is an aircraft that flies by flapping its wings. Designers sought to imitate the flapping-wing flight of birds, bats, and insects. Though machines may differ in form, they are usually built on the same scale as flying animals. Larger, crewed ornithopters have also been built and some have been successful. Crewed ornithopters are generally powered either by engines or by the pilot.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Ornithopter in the context of Fixed-wing aircraft

A fixed-wing aircraft is a heavier-than-air aircraft, such as an airplane, which is capable of flight using aerodynamic lift. Fixed-wing aircraft are distinct from rotary-wing aircraft (in which a rotor mounted on a spinning shaft generates lift), and ornithopters (in which the wings oscillate to generate lift). The wings of a fixed-wing aircraft are not necessarily rigid; kites, hang gliders, variable-sweep wing aircraft, and airplanes that use wing morphing are all classified as fixed wing.

Gliding fixed-wing aircraft, including free-flying gliders and tethered kites, can use moving air to gain altitude. Powered fixed-wing aircraft (airplanes) that gain forward thrust from an engine include powered paragliders, powered hang gliders and ground effect vehicles. Most fixed-wing aircraft are operated by a pilot, but some are unmanned or controlled remotely or are completely autonomous (no remote pilot).

↓ Explore More Topics
In this Dossier

Ornithopter in the context of Heavier than air

The history of aviation spans over two millennia, from the earliest innovations like kites and attempts at tower jumping to supersonic and hypersonic flight in powered, heavier-than-air jet aircraft. Kite flying in China, dating back several hundred years BC, is considered the earliest example of man-made flight. In the 15th-century Leonardo da Vinci designed several flying machines incorporating aeronautical concepts, but they were unworkable due to the limitations of contemporary knowledge.

In the late 18th century, the Montgolfier brothers invented the hot-air balloon which soon led to manned flights. At almost the same time, the discovery of hydrogen gas led to the invention of the hydrogen balloon. Various theories in mechanics by physicists during the same period, such as fluid dynamics and Newton's laws of motion, led to the development of modern aerodynamics; most notably by Sir George Cayley. Balloons, both free-flying and tethered, began to be used for military purposes from the end of the 18th century, with France establishing balloon companies during the French Revolution.

↑ Return to Menu

Ornithopter in the context of Wingspan

The wingspan (or just span) of a bird or an airplane is the distance from one wingtip to the opposite wingtip. For example, the Boeing 777–200 has a wingspan of 60.93 metres (199 ft 11 in), and a wandering albatross (Diomedea exulans) caught in 1965 had a wingspan of 3.63 metres (11 ft 11 in), the official record for a living bird.The term wingspan, more technically 'extent', is also used for other winged animals such as pterosaurs, bats, insects, etc., and other aircraft such as ornithopters.In humans, the term wingspan also refers to the arm span, which is the distance between the length from the end of an individual's arm (measured at the fingertips) to the individual's fingertips on the other arm when raised parallel to the ground at shoulder height.

↑ Return to Menu