Organic carbon in the context of "Heterotroph"

Play Trivia Questions online!

or

Skip to study material about Organic carbon in the context of "Heterotroph"

Ad spacer

⭐ Core Definition: Organic carbon

Total organic carbon (TOC) is an analytical parameter representing the concentration of organic carbon in a sample. TOC determinations are made in a variety of application areas. For example, TOC may be used as a non-specific indicator of water quality, or TOC of source rock may be used as one factor in evaluating a petroleum play. For marine surface sediments average TOC content is 0.5% in the deep ocean, and 2% along the eastern margins.

A typical analysis for total carbon (TC) measures both the total organic carbon (TOC) present and the complementing total inorganic carbon (TIC), the latter representing the amount of non-organic carbon, like carbon in carbonate minerals. Subtracting the inorganic carbon from the total carbon yields TOC. Another common variant of TOC analysis involves removing the TIC portion first and then measuring the leftover carbon. This method involves purging an acidified sample with carbon-free air or nitrogen prior to measurement, and so is more accurately called non-purgeable organic carbon (NPOC).

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Organic carbon in the context of Heterotroph

A heterotroph (/ˈhɛtərəˌtrf, -ˌtrɒf/; from Ancient Greek ἕτερος (héteros), meaning "other", and τροφή (trophḗ), meaning "nourishment") is an organism that cannot produce its own food, instead taking nutrition from other sources of organic carbon, mainly matter from other organisms. In the food chain, heterotrophs are primary, secondary and tertiary consumers, but not producers. Living organisms that are heterotrophic include most animals, all fungi, some bacteria and protists, and many parasitic plants. The term heterotroph arose in microbiology in 1946 as part of a classification of microorganisms based on their type of nutrition. The term is now used in many fields, such as ecology, in describing the food chain. Heterotrophs occupy the second and third trophic levels of the food chain while autotrophs occupy the first trophic level.

Heterotrophs may be subdivided according to their energy source. If the heterotroph uses chemical energy, it is a chemoheterotroph (e.g., humans and mushrooms). If it uses light for energy, then it is a photoheterotroph (e.g., haloquadratum walsbyi and green non-sulfur bacteria).

↓ Explore More Topics
In this Dossier

Organic carbon in the context of Biomass (ecology)

Biomass is the total mass of living biological organisms in a given area or ecosystem at a specific time. Biomass may refer to the species biomass, which is the mass of one or more species, or to community biomass, which is the mass of all species in the community. It encompasses microorganisms, plants, and animals, and is typically expressed as total mass or average mass per unit area.

The method used to measure biomass depends on the context. In some cases, biomass refers to the wet weight of organisms as they exist in nature. For example, in a salmon fishery, the salmon biomass might be regarded as the total wet weight the salmon would have if they were taken out of the water. In other contexts, biomass can be measured in terms of the dried organic mass, so perhaps only 30% of the actual weight might count, the rest being water. In other contexts, it may refer to dry weight (excluding water content), or to the mass of organic carbon, excluding inorganic components such as bones, shells, or teeth.

↑ Return to Menu

Organic carbon in the context of Dissolved organic matter

Dissolved organic carbon (DOC) is the fraction of organic carbon operationally defined as that which can pass through a filter with a pore size typically between 0.22 and 0.7 micrometers. The fraction remaining on the filter is called particulate organic carbon (POC).

Dissolved organic matter (DOM) is a closely related term often used interchangeably with DOC. While DOC refers specifically to the mass of carbon in the dissolved organic material, DOM refers to the total mass of the dissolved organic matter. So DOM also includes the mass of other elements present in the organic material, such as nitrogen, oxygen and hydrogen. DOC is a component of DOM and there is typically about twice as much DOM as DOC. Many statements that can be made about DOC apply equally to DOM, and vice versa.

↑ Return to Menu