Orbital plane in the context of "Plane of reference"

Play Trivia Questions online!

or

Skip to study material about Orbital plane in the context of "Plane of reference"

Ad spacer

⭐ Core Definition: Orbital plane

The orbital plane of a revolving body is the geometric plane in which its orbit lies. Three non-collinear points in space suffice to determine an orbital plane. A common example would be the positions of the centers of a massive body (host) and of an orbiting celestial body at two different times/points of its orbit.

The orbital plane is defined in relation to a reference plane by two parameters: inclination (i) and longitude of the ascending node (Ω).

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Orbital plane in the context of Ecliptic

The ecliptic or ecliptic plane is the orbital plane of Earth around the Sun. It was a central concept in a number of ancient sciences, providing the framework for key measurements in astronomy, astrology and calendar-making.

From the perspective of an observer on Earth, the Sun's movement around the celestial sphere over the course of a year traces out a path along the ecliptic against the background of stars – specifically the Zodiac constellations. The planets of the Solar System can also be seen along the ecliptic, because their orbital planes are very close to Earth's. The Moon's orbital plane is also similar to Earth's; the ecliptic is so named because the ancients noted that eclipses only occur when the Moon is crossing it.

↑ Return to Menu

Orbital plane in the context of Equatorial plane

The celestial equator is the great circle of the imaginary celestial sphere on the same plane as the equator of Earth. By extension, it is also a plane of reference in the equatorial coordinate system. Due to the Earth's axial tilt, the celestial equator is currently inclined by about 23.44° with respect to the ecliptic (the plane of Earth's orbit), but has varied from about 22.0° to 24.5° over the past 5 million years due to Milankovitch cycles and perturbation from other planets.

An observer standing on the Earth's equator visualizes the celestial equator as a semicircle passing through the zenith, the point directly overhead. As the observer moves north (or south), the celestial equator tilts towards the opposite horizon. The celestial equator is defined to be infinitely distant (since it is on the celestial sphere); thus, the ends of the semicircle always intersect the horizon due east and due west, regardless of the observer's position on the Earth. At the poles, the celestial equator coincides with the astronomical horizon. At all latitudes, the celestial equator is a uniform arc or circle because the observer is only finitely far from the plane of the celestial equator, but infinitely far from the celestial equator itself.

↑ Return to Menu

Orbital plane in the context of Orbital inclination

Orbital inclination measures the tilt of an object's orbit around a celestial body. It is expressed as the angle between a reference plane and the orbital plane or axis of direction of the orbiting object.

For a satellite orbiting the Earth directly above the Equator, the plane of the satellite's orbit is the same as the Earth's equatorial plane, and the satellite's orbital inclination is 0°. The general case for a circular orbit is that it is tilted, spending half an orbit over the northern hemisphere and half over the southern. If the orbit swung between 20° north latitude and 20° south latitude, then its orbital inclination would be 20°.

↑ Return to Menu

Orbital plane in the context of Orbital pole

An orbital pole is either point at the ends of the orbital normal, an imaginary line segment that runs through a focus of an orbit (of a revolving body like a planet, moon or satellite) and is perpendicular (or normal) to the orbital plane. Projected onto the celestial sphere, orbital poles are similar in concept to celestial poles, but are based on the body's orbit instead of its equator.

The north orbital pole of a revolving body is defined by the right-hand rule. If the fingers of the right hand are curved along the direction of orbital motion, with the thumb extended and oriented to be parallel to the orbital axis, then the direction the thumb points is defined to be the orbital north.

↑ Return to Menu

Orbital plane in the context of Circular orbit

A circular orbit is an orbit with a fixed distance around the barycenter; that is, in the shape of a circle.In this case, not only the distance, but also the speed, angular speed, potential and kinetic energy are constant. There is no periapsis or apoapsis. This orbit has no radial version.

Listed below is a circular orbit in astrodynamics or celestial mechanics under standard assumptions. Here the centripetal force is the gravitational force, and the axis mentioned above is the line through the center of the central mass perpendicular to the orbital plane.

↑ Return to Menu

Orbital plane in the context of 201 Penelope

201 Penelope is a large main belt asteroid that was discovered by Austrian astronomer Johann Palisa on August 7, 1879, in Pola. The asteroid is named after Penelope, the wife of Odysseus in Homer's The Odyssey. It is orbiting the Sun at a distance of 2.68 AU with an eccentricity (ovalness) of 0.18 and a period of 4.381 years. The orbital plane is tilted at an angle of 5.8° to the plane of the ecliptic.

Based upon the spectra of this object, it is classified as a M-type asteroid, indicating it may be metallic in composition. It may be the remnant of the core of a larger, differentiated asteroid. Near infrared absorption features indicate the presence of variable amounts of low-iron, low-calcium orthopyroxenes on the surface. Trace amounts of water is detected with a mass fraction of about 0.13–0.15 wt%. It has an estimated size of around 88 km. With a rotation period of 3.74 hours, it is the fastest rotating asteroid larger than 50 km in diameter.

↑ Return to Menu