Mass fraction (chemistry) in the context of "201 Penelope"

Play Trivia Questions online!

or

Skip to study material about Mass fraction (chemistry) in the context of "201 Penelope"

Ad spacer

⭐ Core Definition: Mass fraction (chemistry)

In chemistry, the mass fraction of a substance within a mixture is the ratio (alternatively denoted ) of the mass of that substance to the total mass of the mixture. Expressed as a formula, the mass fraction is:

Because the individual masses of the ingredients of a mixture sum to , their mass fractions sum to unity:

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Mass fraction (chemistry) in the context of Saline water

Saline water (more commonly known as salt water) is water that contains a high concentration of dissolved salts (mainly sodium chloride). On the United States Geological Survey (USGS) salinity scale, saline water is saltier than brackish water, but less salty than brine. The salt concentration is usually expressed in parts per thousand (permille, ‰) and parts per million (ppm). The USGS salinity scale defines three levels of saline water. The salt concentration in slightly saline water is 1,000 to 3,000 ppm (0.1–0.3%); in moderately saline water is 3,000 to 10,000 ppm (0.3–1%); and in highly saline water is 10,000 to 35,000 ppm (1–3.5%). Seawater has a salinity of roughly 35,000 ppm, equivalent to 35 grams of salt per one liter (or kilogram) of water. The saturation level is only nominally dependent on the temperature of the water. At 20 °C (68 °F) one liter of water can dissolve about 357 grams of salt, a concentration of 26.3 percent by weight (% w/w). At 100 °C (212 °F) (the boiling temperature of pure water), the amount of salt that can be dissolved in one liter of water increases to about 391 grams, a concentration of 28.1% w/w.

↑ Return to Menu

Mass fraction (chemistry) in the context of Gel

A gel is a semi-solid that can have properties ranging from soft and weak to hard and tough. Gels are defined as a substantially dilute cross-linked system, which exhibits no flow when in the steady state, although the liquid phase may still diffuse through this system.

Gels are mostly liquid by mass, yet they behave like solids because of a three-dimensional cross-linked network within the liquid. It is the cross-linking within the fluid that gives a gel its structure (hardness) and contributes to the adhesive stick (tack). In this way, gels are a dispersion of molecules of a liquid within a solid medium. The word gel was coined by 19th-century Scottish chemist Thomas Graham by clipping from gelatine.

↑ Return to Menu

Mass fraction (chemistry) in the context of Parts per thousand

In science and engineering, the parts-per notation is a set of pseudo-units to describe the small values of miscellaneous dimensionless quantities, e.g. mole fraction or mass fraction.

Since these fractions are quantity-per-quantity measures, they are pure numbers with no associated units of measurement. Commonly used are

↑ Return to Menu

Mass fraction (chemistry) in the context of Slag

Slag is a by-product or co-product of smelting (pyrometallurgical) ores and recycled metals depending on the type of material being produced. Slag is mainly a mixture of metal oxides and silicon dioxide. Broadly, it can be classified as ferrous (co-products of processing iron and steel), ferroalloy (a by-product of ferroalloy production) or non-ferrous/base metals (by-products of recovering non-ferrous materials like copper, nickel, zinc and phosphorus). Within these general categories, slags can be further categorized by their precursor and processing conditions. Examples include blast furnace slags, air-cooled blast furnace slag, granulated blast furnace slag, basic oxygen furnace slag, and electric arc furnace (EAF) slag. Slag generated from the EAF process can contain toxic metals, which can be hazardous to human and environmental health.

Due to the large demand for ferrous, ferralloy, and non-ferrous materials, slag production has increased throughout the years despite recycling (most notably in the iron and steelmaking industries) and upcycling efforts. The World Steel Association (WSA) estimates that 600 kg of co-materials (co-products and by-products; about 90 wt% is slags) are generated per tonne of steel produced.

↑ Return to Menu

Mass fraction (chemistry) in the context of Sterling silver

Sterling silver is an alloy composed by weight of 92.5% silver and 7.5% other metals, usually copper. The sterling silver standard has a minimum millesimal fineness of 925.

Fine silver, which is 99.9% pure silver, is relatively soft, so silver is usually alloyed with copper to increase its hardness and strength. Sterling silver is prone to tarnishing, and elements other than copper can be used in alloys to reduce tarnishing, as well as casting porosity and firescale. Such elements include germanium, zinc, platinum, silicon, and boron. Recent examples of these alloys include argentium, sterlium and silvadium.

↑ Return to Menu

Mass fraction (chemistry) in the context of Abundance of the chemical elements

The abundance of the chemical elements is a measure of the occurrences of the chemical elements relative to all other elements in a given environment. Abundance is measured in one of three ways: by mass fraction (in commercial contexts often called weight fraction), by mole fraction (fraction of atoms by numerical count, or sometimes fraction of molecules in gases), or by volume fraction. Volume fraction is a common abundance measure in mixed gases such as planetary atmospheres, and is similar in value to molecular mole fraction for gas mixtures at relatively low densities and pressures, and ideal gas mixtures. Most abundance values in this article are given as mass fractions.

The abundance of chemical elements in the universe is dominated by the large amounts of hydrogen and helium which were produced during Big Bang nucleosynthesis. Remaining elements, making up only about 2% of the universe, were largely produced by supernova nucleosynthesis. Elements with even atomic numbers are generally more common than their neighbors in the periodic table, due to their favorable energetics of formation, described by the Oddo–Harkins rule.

↑ Return to Menu