Optical depth in the context of Diazenylium


Optical depth in the context of Diazenylium

Optical depth Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Optical depth in the context of "Diazenylium"


⭐ Core Definition: Optical depth

In physics, optical depth or optical thickness is the natural logarithm of the ratio of incident to transmitted radiant power through a material.Thus, the larger the optical depth, the smaller the amount of transmitted radiant power through the material. Spectral optical depth or spectral optical thickness is the natural logarithm of the ratio of incident to transmitted spectral radiant power through a material. Optical depth is dimensionless, and in particular is not a length, though it is a monotonically increasing function of optical path length, and approaches zero as the path length approaches zero. The use of the term "optical density" for optical depth is discouraged.

In chemistry, a closely related quantity called "absorbance" or "decadic absorbance" is used instead of optical depth: the common logarithm of the ratio of incident to transmitted radiant power through a material. It is the optical depth divided by loge(10), because of the different logarithm bases used.

↓ Menu
HINT:

👉 Optical depth in the context of Diazenylium

Diazenylium is the chemical N2H, an inorganic cation that was one of the first ions to be observed in interstellar clouds. Since then, it has been observed in several different types of interstellar environments, observations that have several different scientific uses. It gives astronomers information about the fractional ionization of gas clouds, the chemistry that happens within those clouds, and it is often used as a tracer for molecules that are not as easily detected (such as N2). Its 1–0 rotational transition occurs at 93.174 GHz, a region of the spectrum where Earth's atmosphere is transparent and it has a significant optical depth in both cold and warm clouds so it is relatively easy to observe with ground-based observatories. The results of N2H observations can be used not only for determining the chemistry of interstellar clouds, but also for mapping the density and velocity profiles of these clouds.

↓ Explore More Topics
In this Dossier

Optical depth in the context of Cloud cover

Cloud cover (also known as cloudiness, cloudage, or cloud amount) refers to the fraction of the sky obscured by clouds on average when observed from a particular location. Okta is the usual unit for measurement of the cloud cover. The cloud cover is correlated to the sunshine duration as the least cloudy locales are the sunniest ones while the cloudiest areas are the least sunny places, as clouds can block sunlight, especially at sunrise and sunset where sunlight is already limited.

The global cloud cover averages around 67-68%, though it ranges from 56% to 73% depending on the minimum optical depth considered (lower when optical depth is large, and higher when it is low, such that subvisible cirrus clouds are counted). Average cloud cover is around 72% over the oceans, with low seasonal variation, and about 55% above land, with significant seasonal variation.

View the full Wikipedia page for Cloud cover
↑ Return to Menu

Optical depth in the context of Photosphere

The photosphere is a star's outer shell from which light is radiated. It extends into a star's surface until the plasma becomes opaque, equivalent to an optical depth of approximately 23, or equivalently, a depth from which 50% of light will escape without being scattered.

A photosphere is the region of a luminous object, usually a star, that is transparent to photons of certain wavelengths.

View the full Wikipedia page for Photosphere
↑ Return to Menu

Optical depth in the context of Runaway greenhouse effect

A runaway greenhouse effect will occur when a planet's atmosphere contains greenhouse gas in an amount sufficient to block thermal radiation from leaving the planet, preventing the planet from cooling and from having liquid water on its surface. A runaway version of the greenhouse effect can be defined by a limit on a planet's outgoing longwave radiation, which is asymptotically reached due to higher surface temperatures evaporating water into the atmosphere, increasing its optical depth. This positive feedback loop means the planet cannot cool down through longwave radiation (via the Stefan–Boltzmann law) and continues to heat up until it can radiate outside of the absorption bands of the water vapour.

The runaway greenhouse effect is often formulated with water vapour as the condensable species. The water vapour reaches the stratosphere and escapes into space via hydrodynamic escape, resulting in a desiccated planet. This likely happened in the early history of Venus.

View the full Wikipedia page for Runaway greenhouse effect
↑ Return to Menu

Optical depth in the context of Rings of Neptune

The rings of Neptune consist primarily of five principal rings. They were first discovered (as "arcs") by simultaneous observations of a stellar occultation on 22 July 1984 by Patrice Bouchet, Reinhold Häfner and Jean Manfroid at the La Silla Observatory (ESO) who were conducting a star occultation observation program proposed by André Brahic, Bruno Sicardy and Françoise Roques of the Paris-Meudon Observatory and William B. Hubbard's teams at Cerro Tololo Interamerican Observatory in Chile. They were eventually imaged in 1989 by the Voyager 2 spacecraft. At their densest, they are comparable to the less dense portions of Saturn's main rings such as the C ring and the Cassini Division, but much of Neptune's ring system is quite faint and dusty, in some aspects more closely resembling the rings of Jupiter. Neptune's rings are named after astronomers who contributed important work on the planet: Galle, Le Verrier, Lassell, Arago, and Adams. Neptune also has a faint unnamed ring coincident with the orbit of the moon Galatea. Three other moons orbit between the rings: Naiad, Thalassa and Despina.

The rings of Neptune are made of extremely dark material, likely organic compounds processed by radiation, similar to those found in the rings of Uranus. The proportion of dust in the rings (between 20% and 70%) is high, while their optical depth is low to moderate, at less than 0.1. Uniquely, the Adams ring includes five distinct arcs, named Fraternité, Égalité 1 and 2, Liberté, and Courage. The arcs occupy a narrow range of orbital longitudes and are remarkably stable, having changed only slightly since their initial detection in 1980. How the arcs are stabilized is still under debate. However, their stability is probably related to the resonant interaction between the Adams ring and its inner shepherd moon, Galatea.

View the full Wikipedia page for Rings of Neptune
↑ Return to Menu