Optical amplifier in the context of "Photonics"

Play Trivia Questions online!

or

Skip to study material about Optical amplifier in the context of "Photonics"

Ad spacer

⭐ Core Definition: Optical amplifier

An optical amplifier is a device that amplifies an optical signal directly, without the need to first convert it to an electrical signal. An optical amplifier may be thought of as a laser without an optical cavity, or one in which feedback from the cavity is suppressed. Optical amplifiers are important in optical communication and laser physics. They are used as optical repeaters in the long distance fiber-optic cables which carry much of the world's telecommunication links.

There are several different physical mechanisms that can be used to amplify a light signal, which correspond to the major types of optical amplifiers. In doped fiber amplifiers and bulk lasers, stimulated emission in the amplifier's gain medium causes amplification of incoming light. In semiconductor optical amplifiers (SOAs), electronhole recombination occurs. In Raman amplifiers, Raman scattering of incoming light with phonons in the lattice of the gain medium produces photons coherent with the incoming photons. Parametric amplifiers use parametric amplification.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Optical amplifier in the context of Photonics

Photonics is a branch of optics that involves the application of generation, detection, and manipulation of light in the form of photons through emission, transmission, modulation, signal processing, switching, amplification, and sensing. Even though photonics is a commonly used term, there is no widespread agreement on a clear definition of the term or on the difference between photonics and related fields, such as optics.

Photonics is closely related to quantum optics, which studies the theory behind photonics' engineering applications. Though covering all light's technical applications over the whole spectrum, most photonic applications are in the range of visible and near-infrared light.

↓ Explore More Topics
In this Dossier

Optical amplifier in the context of Optical networking

Optical networking is a means of communication that uses signals encoded in light to transmit information in various types of telecommunications networks. These include limited range local-area networks (LAN) or wide area networks (WANs), which cross metropolitan and regional areas as well as long-distance national, international and transoceanic networks. It is a form of optical communication that relies on optical amplifiers, lasers or LEDs and wavelength-division multiplexing (WDM) to transmit large quantities of data, generally across fiber-optic cables. Because it is capable of achieving extremely high bandwidth, it is an enabling technology for the Internet and telecommunication networks that transmit the vast majority of all human and machine-to-machine information.

↑ Return to Menu

Optical amplifier in the context of Gordon Gould

Richard Gordon Gould (July 17, 1920 – September 16, 2005) was an American physicist who is sometimes credited with the invention of the laser and the optical amplifier. (Credit for the invention of the laser is disputed, since Charles Townes and Arthur Schawlow were the first to publish the theory and Theodore Maiman was the first to build a working laser). Gould is best known for his thirty-year fight with the United States Patent and Trademark Office to obtain patents for the laser and related technologies. He also fought with laser manufacturers in court battles to enforce the patents he subsequently did obtain.

↑ Return to Menu

Optical amplifier in the context of Fiber laser

A fiber laser (or fibre laser in Commonwealth English) is a laser in which the active gain medium is an optical fiber doped with rare-earth elements such as erbium, ytterbium, neodymium, dysprosium, praseodymium, thulium and holmium. They are related to doped fiber amplifiers, which provide light amplification without lasing.

Fiber nonlinearities, such as stimulated Raman scattering or four-wave mixing, can also provide gain and thus serve as gain media for a fiber laser.

↑ Return to Menu