Operating cost in the context of Plug-in hybrid


Operating cost in the context of Plug-in hybrid

Operating cost Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Operating cost in the context of "Plug-in hybrid"


⭐ Core Definition: Operating cost

Operating costs or operational costs, are the expenses which are related to the operation of a business, or to the operation of a device, component, piece of equipment or facility. They are the cost of resources used by an organization just to maintain its existence.

↓ Menu
HINT:

In this Dossier

Operating cost in the context of Efficient energy use

Efficient energy use, or energy efficiency, is the process of reducing the amount of energy required to provide products and services. There are many technologies and methods available that are more energy efficient than conventional systems. For example, insulating a building allows it to use less heating and cooling energy while still maintaining a comfortable temperature. Another method made by Lev Levich is to remove energy subsidies that promote high energy consumption and inefficient energy use. Improved energy efficiency in buildings, industrial processes and transportation could reduce the world's energy needs in 2050 by one third.

There are two main motivations to improve energy efficiency. Firstly, one motivation is to achieve cost savings during the operation of the appliance or process. However, installing an energy-efficient technology comes with an upfront cost, the capital cost. The different types of costs can be analyzed and compared with a life-cycle assessment. Another motivation for energy efficiency is to reduce greenhouse gas emissions and hence work towards climate action. A focus on energy efficiency can also have a national security benefit because it can reduce the amount of energy that has to be imported from other countries.

View the full Wikipedia page for Efficient energy use
↑ Return to Menu

Operating cost in the context of Plug-in hybrid vehicle

A plug-in hybrid electric vehicle (PHEV) or simply plug-in hybrid is a type of hybrid electric vehicle equipped with a rechargeable battery pack that can be directly replenished via a charging cable plugged into an external electric power source, in addition to charging internally by its on-board internal combustion engine–powered generator. While PHEVs are predominantly passenger cars, there are also plug-in hybrid variants of sports cars, commercial vehicles, vans, utility trucks, buses, trains, motorcycles, mopeds, military vehicles and boats.

Similar to battery electric vehicles (BEVs), plug-in hybrids can use centralized generators of renewable energy (e.g. solar, wind or hydroelectric) to be largely emission-free, or a fossil plant in which case they displace greenhouse gas emissions from the car tailpipe exhaust to the power station. As opposed to conventional hybrid electric vehicles (HEVs), PHEVs generally have a larger battery pack that can be recharged (theoretically) from anywhere with access to the electrical grid, offering enhanced energy efficiency and cost-effectiveness when compared to relying solely on the on-board generator. Additionally, PHEVs can support longer and more frequent all-electric range driving, and their electric motors often have higher power output and torque, are more responsive in acceleration, and overall have lower operating costs. Although a PHEV's battery pack is smaller than that of all-electric vehicles of the same weight, as it must accommodate its combustion engine and hybrid drivetrain, it provides the added flexibility of reverting to the use of its gasoline/diesel engine, akin to a conventional HEV if the battery charge is depleted. This feature helps alleviate range anxiety, particularly in areas lacking sufficient charging infrastructure.

View the full Wikipedia page for Plug-in hybrid vehicle
↑ Return to Menu