Opal in the context of "Opalescence"

Play Trivia Questions online!

or

Skip to study material about Opal in the context of "Opalescence"

Ad spacer

⭐ Core Definition: Opal

Opal is a hydrated amorphous form of silica (SiO2·nH2O); its water content may range from 3% to 21% by weight, but is usually between 6% and 10%. Due to the amorphous (chemical) physical structure, it is classified as a mineraloid, unlike crystalline forms of silica, which are considered minerals. It is deposited at a relatively low temperature and may occur in the fissures of almost any kind of rock, being most commonly found with limonite, sandstone, rhyolite, marl, and basalt.

The name opal is believed to be derived from the Sanskrit word upala (उपल), which means 'jewel', and later the Greek derivative opállios (ὀπάλλιος).

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Opal in the context of Silica

Silicon dioxide, also known as silica, is an oxide of silicon with the chemical formula SiO2, commonly found in nature as quartz. In many parts of the world, silica is the major constituent of sand. Silica is one of the most complex and abundant families of materials, existing as a compound of several minerals and as a synthetic product. Examples include fused quartz, fumed silica, opal, and aerogels. It is used in structural materials, microelectronics, and as components in the food and pharmaceutical industries. All forms are white or colorless, although impure samples can be colored.

Silicon dioxide is a common fundamental constituent of glass.

↑ Return to Menu

Opal in the context of Gemstones

A gemstone (also called a fine gem, jewel, precious stone, semiprecious stone, or simply gem) is a piece of mineral crystal which, when cut or polished, is used to make jewelry or other adornments. Certain rocks (such as lapis lazuli, opal, and obsidian) and occasionally organic materials that are not minerals (such as amber, jet, and pearl) may also be used for jewelry and are therefore often considered to be gemstones as well. Most gemstones are hard, but some softer minerals such as brazilianite may be used in jewelry because of their color or luster or other physical properties that have aesthetic value. However, generally speaking, soft minerals are not typically used as gemstones by virtue of their brittleness and lack of durability.

Found all over the world, the industry of coloured gemstones (i.e. anything other than diamonds) is currently estimated at US$1.55 billion as of 2023 and is projected to steadily increase to a value of $4.46 billion by 2033.

↑ Return to Menu

Opal in the context of Mineraloid

A mineraloid is a naturally occurring substance that resembles a mineral, but does not demonstrate the crystallinity of a mineral. Mineraloid substances possess chemical compositions that vary beyond the generally accepted ranges for specific minerals, for example, obsidian is an amorphous glass and not a true crystal; lignite (jet) is derived from the decay of wood under extreme pressure underground; and opal is a mineraloid substance because of its non-crystalline nature. Pearl is a mineraloid substance because the calcite crystals and the aragonite crystals are bonded by an organic material, and naturally occurs without definite proportions of the components.

The first usage of the term mineraloid substance was in 1909, by mineralogist and geologist Julian Niedzwiedzki, in identifying and describing amorphous substances that resemble minerals.

↑ Return to Menu

Opal in the context of Geyserite

Geyserite, or siliceous sinter, is a form of opaline silica that is often found as crusts or layers around hot springs and geysers. Botryoidal geyserite is known as fiorite. Geyserite is porous due to the silica enclosing many small cavities. Siliceous sinter should not be confused with calcareous sinter, which is made of calcium carbonate.

In May 2017, evidence of the earliest known life on land may have been found in 3.48-billion-year-old geyserite uncovered in the Pilbara Craton of Western Australia.

↑ Return to Menu

Opal in the context of Petrified wood

Petrified wood (from Ancient Greek πέτρα meaning 'rock' or 'stone'; literally 'wood turned into stone'), is the name given to a special type of fossilized wood, the fossilized remains of terrestrial vegetation. Petrifaction is the result of a tree or tree-like plants having been replaced by stone via a mineralization process that often includes permineralization and replacement. The organic materials making up cell walls have been replicated with minerals (mostly silica in the form of opal, chalcedony, or quartz). In some instances, the original structure of the stem tissue may be partially retained. Unlike other plant fossils, which are typically impressions or compressions, petrified wood is a three-dimensional representation of the original organic material.

The petrifaction process occurs underground, when wood becomes buried in water or volcanic ash. The presence of water reduces the availability of oxygen which inhibits aerobic decomposition by bacteria and fungi. Mineral-laden water flowing through the sediments may lead to permineralization, which occurs when minerals precipitate out of solution filling the interiors of cells and other empty spaces. During replacement, the plant's cell walls act as a template for mineralization. There needs to be a balance between the decay of cellulose and lignin and mineral templating for cellular detail to be preserved with fidelity. Most of the organic matter often decomposes, however some of the lignin may remain. Silica in the form of opal-A, can encrust and permeate wood relatively quickly in hot spring environments. However, petrified wood is most commonly associated with trees that were buried in fine grained sediments of deltas and floodplains or volcanic lahars and ash beds. A forest where such material has petrified becomes known as a petrified forest.

↑ Return to Menu