Olfaction in the context of Texture (food)


Olfaction in the context of Texture (food)

Olfaction Study page number 1 of 4

Play TriviaQuestions Online!

or

Skip to study material about Olfaction in the context of "Texture (food)"


⭐ Core Definition: Olfaction

The sense of smell, or olfaction, is the special sense through which smells (or odors) are perceived. The sense of smell has many functions, including detecting desirable foods, hazards, and pheromones, and plays a role in taste.

In humans, it occurs when an odor binds to a receptor within the nasal cavity, transmitting a signal through the olfactory system. Glomeruli aggregate signals from these receptors and transmit them to the olfactory bulb, where the sensory input will start to interact with parts of the brain responsible for smell identification, memory, and emotion.

↓ Menu
HINT:

In this Dossier

Olfaction in the context of Sense

A sense is a biological system used by an organism for sensation, the process of gathering information about the surroundings through the detection of stimuli. Although, in some cultures, five human senses were traditionally identified as such (namely sight, smell, touch, taste, and hearing), many more are now recognized. Senses used by non-human organisms are even greater in variety and number. During sensation, sense organs collect various stimuli (such as a sound or smell) for transduction, meaning transformation into a form that can be understood by the brain. Sensation and perception are fundamental to nearly every aspect of an organism's cognition, behavior and thought.

In organisms, a sensory organ consists of a group of interrelated sensory cells that respond to a specific type of physical stimulus. Via cranial and spinal nerves (nerves of the central and peripheral nervous systems that relay sensory information to and from the brain and body), the different types of sensory receptor cells (such as mechanoreceptors, photoreceptors, chemoreceptors, thermoreceptors) in sensory organs transduct sensory information from these organs towards the central nervous system, finally arriving at the sensory cortices in the brain, where sensory signals are processed and interpreted (perceived).

View the full Wikipedia page for Sense
↑ Return to Menu

Olfaction in the context of Whale vocalization

Whales use a variety of sounds for communication and sensation. The mechanisms used to produce sound vary from one family of cetaceans to another. Marine mammals, including whales, dolphins, and porpoises, are much more dependent on sound than land mammals due to the limited effectiveness of other senses in water. Sight is less effective for marine mammals because of the way particulates in the ocean scatter light. Smell is also limited, as molecules diffuse more slowly in water than in air, which makes smelling less effective. However, the speed of sound is roughly three times greater in water than in the atmosphere at sea level. As sea mammals are so dependent on hearing to communicate and feed, environmentalists and cetologists are concerned that they are being harmed by the increased ambient noise in the world's oceans caused by ships, sonar and marine seismic surveys.

The word "song" is used to describe the pattern of regular and predictable sounds made by some species of whales, notably the humpback whale. This is included with or in comparison with music, and male humpback whales have been described as "inveterate composers" of songs that are "'strikingly similar' to human musical traditions". This position has been complicated by more recent research, however. It has been suggested that humpback songs communicate male fitness to female whales, although this explanation has been challenged on various grounds.

View the full Wikipedia page for Whale vocalization
↑ Return to Menu

Olfaction in the context of Reference

In logic, a reference is a relationship between objects in which one object designates, or acts as a means by which to connect to or link to, another object. The first object in this relation is said to refer to the second object. It is called a name for the second object. The next object, the one to which the first object refers, is called the referent of the first object. A name is usually a phrase or expression, or some other symbolic representation. Its referent may be anything – a material object, a person, an event, an activity, or an abstract concept.

References can take on many forms, including: a thought, a sensory perception that is audible (onomatopoeia), visual (text), olfactory, or tactile, emotional state, relationship with other, spacetime coordinates, symbolic or alpha-numeric, a physical object, or an energy projection. In some cases, methods are used that intentionally hide the reference from some observers, as in cryptography.

View the full Wikipedia page for Reference
↑ Return to Menu

Olfaction in the context of Brain

The brain is an organ that serves as the center of the nervous system in all vertebrate and most invertebrate animals. It consists of nervous tissue and is typically located in the head (cephalization), usually near organs for special senses such as vision, hearing, and olfaction. Being the most specialized organ, it is responsible for receiving information from the sensory nervous system, processing that information (thought, cognition, and intelligence) and the coordination of motor control (muscle activity and endocrine system).

While invertebrate brains arise from paired segmental ganglia (each of which is only responsible for the respective body segment) of the ventral nerve cord, vertebrate brains develop axially from the midline dorsal nerve cord as a vesicular enlargement at the rostral end of the neural tube, with centralized control over all body segments. All vertebrate brains can be embryonically divided into three parts: the forebrain (prosencephalon, subdivided into telencephalon and diencephalon), midbrain (mesencephalon) and hindbrain (rhombencephalon, subdivided into metencephalon and myelencephalon). The spinal cord, which directly interacts with somatic functions below the head, can be considered a caudal extension of the myelencephalon enclosed inside the vertebral column. Together, the brain and spinal cord constitute the central nervous system in all vertebrates.

View the full Wikipedia page for Brain
↑ Return to Menu

Olfaction in the context of Sensory nervous system

The sensory nervous system is a part of the nervous system responsible for processing sensory information. A sensory system consists of sensory neurons (including the sensory receptor cells), neural pathways, and parts of the brain involved in sensory perception and interoception. Commonly recognized sensory systems are those for vision, hearing, touch, taste, smell, balance and visceral sensation. Sense organs are transducers that convert data from the outer physical world to the realm of the mind where people interpret the information, creating their perception of the world around them.

The receptive field is the area of the body or environment to which a receptor organ and receptor cells respond. For instance, the part of the world an eye can see, is its receptive field; the light that each rod or cone can see, is its receptive field. Receptive fields have been identified for the visual system, auditory system and somatosensory system.

View the full Wikipedia page for Sensory nervous system
↑ Return to Menu

Olfaction in the context of Taste

The gustatory system or sense of taste is the sensory system that is partially responsible for the perception of taste. Taste is the perception stimulated when a substance in the mouth reacts chemically with taste receptor cells located on taste buds in the oral cavity, mostly on the tongue. Taste, along with the sense of smell and trigeminal nerve stimulation (registering texture, pain, and temperature), determines flavors of food and other substances. Humans have taste receptors on taste buds and other areas, including the upper surface of the tongue and the epiglottis. The gustatory cortex is responsible for the perception of taste.

The tongue is covered with thousands of small bumps called papillae, which are visible to the naked eye. Within each papilla are hundreds of taste buds. The exceptions to this is the filiform papillae that do not contain taste buds. There are between 2000 and 5000 taste buds that are located on the back and front of the tongue. Others are located on the roof, sides and back of the mouth, and in the throat. Each taste bud contains 50 to 100 taste receptor cells.

View the full Wikipedia page for Taste
↑ Return to Menu

Olfaction in the context of Cranial nerves

Cranial nerves are nerves that emerge directly from the brain, including the brainstem. They relay information between the brain and various parts of the body, primarily to the head and neck regions and are responsible for special senses of vision, taste, smell, and hearing.

The cranial nerves emerge from the central nervous system above the level of the first vertebra of the vertebral column. Each cranial nerve is paired and is present on both sides.

View the full Wikipedia page for Cranial nerves
↑ Return to Menu

Olfaction in the context of Primary–secondary quality distinction

The primary–secondary quality distinction is a conceptual distinction in epistemology and metaphysics, concerning the nature of reality. It is most explicitly articulated by John Locke in his Essay concerning Human Understanding, but earlier thinkers such as Galileo and Descartes made similar distinctions. Primary qualities are thought to be properties of objects that are independent of any observer, such as solidity, extension, motion, number and figure, while secondary qualities are thought to be properties that produce sensations in observers, such as color, taste, smell, and sound.

View the full Wikipedia page for Primary–secondary quality distinction
↑ Return to Menu

Olfaction in the context of Head (anatomy)

A head is the part of an organism which usually includes the ears, brain, forehead, cheeks, chin, eyes, nose, and mouth, each of which aid in various sensory functions such as sight, hearing, smell, and taste. Some very simple animals may not have a head, but many bilaterally symmetric forms do, regardless of size.

Heads develop in animals by an evolutionary trend known as cephalization. In bilaterally symmetrical animals, nervous tissue concentrate at the anterior region, forming structures responsible for information processing. Through biological evolution, sense organs and feeding structures also concentrate into the anterior region; these collectively form the head.

View the full Wikipedia page for Head (anatomy)
↑ Return to Menu

Olfaction in the context of Disgust

Disgust (Middle French: desgouster, from Latin gustus, 'taste') is an emotional response of rejection or revulsion to something potentially contagious or something considered offensive, distasteful or unpleasant. In The Expression of the Emotions in Man and Animals, Charles Darwin wrote that disgust is a sensation that refers to something revolting. Disgust is experienced primarily in relation to the sense of taste (either perceived or imagined), and secondarily to anything which causes a similar feeling by sense of smell, touch, or vision. Musically sensitive people may even be disgusted by the cacophony of inharmonious sounds. Research has continually proven a relationship between disgust and anxiety disorders such as arachnophobia, blood-injection-injury type phobias, and contamination fear related obsessive–compulsive disorder (also known as OCD).

Disgust is one of the basic emotions of Robert Plutchik's theory of emotions, and has been studied extensively by Paul Rozin. It invokes a characteristic facial expression, one of Paul Ekman's six universal facial expressions of emotion. Unlike the emotions of fear, anger, and sadness, disgust is associated with a decrease in heart rate (for body-envelope violations) and proto-nausea of the stomach (for bodily effluvia).

View the full Wikipedia page for Disgust
↑ Return to Menu

Olfaction in the context of Aroma compound

An aroma compound, also known as an odorant, aroma, fragrance, flavoring or flavor, is a chemical compound that has a smell or odor. For an individual chemical or class of chemical compounds to impart a smell or fragrance, it must be sufficiently volatile for transmission via the air to the olfactory system in the upper part of the nose. As examples, various fragrant fruits have diverse aroma compounds, particularly strawberries which are commercially cultivated to have appealing aromas, and contain several hundred aroma compounds.

Generally, molecules meeting this specification have molecular weights of less than 310. Flavors affect both the sense of taste and smell, whereas fragrances affect only smell. Flavors tend to be naturally occurring, and the term fragrances may also apply to synthetic compounds, such as those used in cosmetics.

View the full Wikipedia page for Aroma compound
↑ Return to Menu

Olfaction in the context of Nocturnal

Nocturnality is a behavior in some non-human animals characterized by being active during the night and sleeping during the day. The common adjective is nocturnal, with diurnal meaning the opposite.

Nocturnal creatures generally have highly developed senses of hearing, smell, and specially adapted eyesight. Some animals, such as ferrets, have eyes that can adapt to both low-level and bright day levels of illumination (see metaturnal). Others, such as bushbabies and (some) bats, can function only at night. Many nocturnal creatures including tarsiers and some owls have large eyes in comparison with their body size to compensate for the lower light levels at night. More specifically, they have been found to have a larger cornea relative to their eye size than diurnal creatures to increase their visual sensitivity: in the low-light conditions. Nocturnality helps wasps, such as Apoica flavissima, avoid hunting in intense sunlight.

View the full Wikipedia page for Nocturnal
↑ Return to Menu

Olfaction in the context of Hallucination

A hallucination is a perception in the absence of an external context stimulus that has the compelling sense of reality. They are distinguishable from several related phenomena, such as dreaming (REM sleep), which does not involve wakefulness; pseudohallucination, which does not mimic real perception, and is accurately perceived as unreal; illusion, which involves distorted or misinterpreted real perception; and mental imagery, which does not mimic real perception, and is under voluntary control. Hallucinations also differ from "delusional perceptions", in which a correctly sensed and interpreted stimulus (i.e., a real perception) is given some additional significance.

Hallucinations can occur in any sensory modalityvisual, auditory, olfactory, gustatory, tactile, proprioceptive, equilibrioceptive, nociceptive, thermoceptive and chronoceptive. Hallucinations are referred to as multimodal if multiple sensory modalities occur.

View the full Wikipedia page for Hallucination
↑ Return to Menu

Olfaction in the context of Mouthfeel

Mouthfeel refers to the physical sensations in the mouth caused by food or drink, making it distinct from taste. It is a fundamental sensory attribute which, along with taste and smell, determines the overall flavor of a food item. Mouthfeel is also sometimes referred to as texture.

It is used in many areas related to the testing and evaluating of foodstuffs, such as wine-tasting and food rheology. It is evaluated from initial perception on the palate to first bite, through chewing to swallowing and aftertaste. In wine-tasting, for example, mouthfeel is usually used with a modifier (big, sweet, tannic, chewy, etc.) to the general sensation of the wine in the mouth. Research indicates texture and mouthfeel can also influence satiety with the effect of viscosity most significant.

View the full Wikipedia page for Mouthfeel
↑ Return to Menu