Ocean surface wave in the context of "Breaking wave"

Play Trivia Questions online!

or

Skip to study material about Ocean surface wave in the context of "Breaking wave"

Ad spacer

⭐ Core Definition: Ocean surface wave

In fluid dynamics, a wind wave, or wind-generated water wave, is a surface wave that occurs on the free surface of bodies of water as a result of the wind blowing over the water's surface. The contact distance in the direction of the wind is known as the fetch. Waves in the oceans can travel thousands of kilometers before reaching land. Wind waves on Earth range in size from small ripples to waves over 30 m (100 ft) high, being limited by wind speed, duration, fetch, and water depth.

When directly generated and affected by local wind, a wind wave system is called a wind sea. Wind waves will travel in a great circle route after being generated – curving slightly left in the southern hemisphere and slightly right in the northern hemisphere. After moving out of the area of fetch and no longer being affected by the local wind, wind waves are called swells and can travel thousands of kilometers. A noteworthy example of this is waves generated south of Tasmania during heavy winds that will travel across the Pacific to southern California, producing desirable surfing conditions. Wind waves in the ocean are also called ocean surface waves and are mainly gravity waves, where gravity is the main equilibrium force.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Ocean surface wave in the context of Breaking wave

In fluid dynamics and nautical terminology, a breaking wave or breaker is a wave with enough energy to "break" at its peak, reaching a critical level at which linear energy transforms into wave turbulence energy with a distinct forward curve. At this point, simple physical models that describe wave dynamics often become invalid, particularly those that assume linear behaviour.

The most generally familiar sort of breaking wave is the breaking of water surface waves on a coastline. Wave breaking generally occurs where the amplitude reaches the point that the crest of the wave actually overturns. Certain other effects in fluid dynamics have also been termed "breaking waves", partly by analogy with water surface waves. In meteorology, atmospheric gravity waves are said to break when the wave produces regions where the potential temperature decreases with height, leading to energy dissipation through convective instability; likewise, Rossby waves are said to break when the potential vorticity gradient is overturned. Wave breaking also occurs in plasmas, when the particle velocities exceed the wave's phase speed. Another application in plasma physics is plasma expansion into a vacuum, in which the process of wave breaking and the subsequent development of a fast ion peak is described by the Sack-Schamel equation.

↓ Explore More Topics
In this Dossier

Ocean surface wave in the context of Surf zone

The surf zone or breaker zone is the nearshore part of a body of open water between the line at which the waves break and the shore. As ocean surface waves approach a shore, they interact with the bottom, get taller and steeper, and break, forming the foamy surface called surf. The region of breaking waves defines the surf zone. After breaking in the surf zone, the waves (now reduced in height) continue to move in, and they run up onto the sloping front of the beach, forming an uprush of water called swash. The water then runs back again as backwash. The water in the surf zone is relatively shallow, depending on the height and period of the waves.

↑ Return to Menu

Ocean surface wave in the context of Fetch (geography)

In oceanography wind fetch, also known as fetch length or simply fetch, is the length of water over which a given wind has blown without obstruction. Fetch is used in geography and meteorology and its effects are usually associated with sea state and when it reaches shore it is the main factor that creates storm surge which leads to coastal erosion and flooding. It also plays a large part in longshore drift.

Fetch length, along with the wind speed (wind strength), and duration, determines the size (sea state) of waves produced. If the wind direction is constant, the longer the fetch and the greater the wind speed, the more wind energy is transferred to the water surface and the larger the resulting sea state will be. Sea state will increase over time until local energy dissipation balances energy transfer to the water from the wind and a fully developed sea results.

↑ Return to Menu

Ocean surface wave in the context of Swash

Swash, or forewash in geography, is a turbulent layer of water that washes up on the beach after an incoming wave has broken. The swash action can move beach materials up and down the beach, which results in the cross-shore sediment exchange. The time-scale of swash motion varies from seconds to minutes depending on the type of beach (see Figure 1 for beach types). Greater swash generally occurs on flatter beaches. The swash motion plays the primary role in the formation of morphological features and their changes in the swash zone. The swash action also plays an important role as one of the instantaneous processes in wider coastal morphodynamics.

There are two approaches that describe swash motions: (1) swash resulting from the collapse of high-frequency bores () on the beachface; and (2) swash characterised by standing, low-frequency () motions. Which type of swash motion prevails is dependent on the wave conditions and the beach morphology and this can be predicted by calculating the surf similarity parameter (Guza & Inman 1975):

↑ Return to Menu

Ocean surface wave in the context of Wave height

In fluid dynamics, the wave height of a surface wave is the difference between the elevations of a crest and a neighboring trough. Wave height is a term used by mariners, as well as in coastal, ocean and naval engineering.

At sea, the term significant wave height is used as a means to introduce a well-defined and standardized statistic to denote the characteristic height of the random waves in a sea state, including wind sea and swell. It is defined in such a way that it more or less corresponds to what a mariner observes when estimating visually the average wave height.

↑ Return to Menu