Nuclear clock in the context of Atomic electron transition


Nuclear clock in the context of Atomic electron transition

Nuclear clock Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Nuclear clock in the context of "Atomic electron transition"


⭐ Core Definition: Nuclear clock

A nuclear clock or nuclear optical clock is an atomic clock being developed that will use the energy of a nuclear isomeric transition as its reference frequency, instead of the atomic electron transition energy used by conventional atomic clocks. Such a clock is expected to be more accurate than the best current atomic clocks by a factor of about 10, with an achievable accuracy approaching the 10 level.

The only nuclear state suitable for the development of a nuclear clock using existing technology is thorium-229m, an isomer of thorium-229 and the lowest-energy nuclear isomer known. With an energy of 8.355733554021(8) eV, this corresponds to a frequency of 2020407384335±2 kHz, or wavelength of 148.382182883 nm, in the vacuum ultraviolet region, making it accessible to laser excitation.

↓ Menu
HINT:

In this Dossier

Nuclear clock in the context of Thorium-234

Thorium (90Th) has seven naturally occurring isotopes but none are stable. One isotope, Th, is relatively stable, with a half-life of 1.40×10 years, considerably longer than the age of the Earth, and even slightly longer than the generally accepted age of the universe. This isotope makes up nearly all natural thorium, so thorium was considered to be mononuclidic. However, in 2013, IUPAC reclassified thorium as binuclidic, due to large amounts of Th in deep seawater. Thorium has a characteristic terrestrial isotopic composition and thus a standard atomic weight can be given.

Thirty-one radioisotopes have been characterized, with the most stable being Th, Th with a half-life of 75,400 years, Th with a half-life of 7,916 years, and Th with a half-life of 1.91 years. All of the remaining radioactive isotopes have half-lives that are less than thirty days and the majority of these have half-lives that are less than ten minutes. One isotope, Th, has a nuclear isomer (or metastable state) with a remarkably low excitation energy, recently measured to be 8.355733554021(8) eV It has been proposed to perform laser spectroscopy of the Th nucleus and use the low-energy transition for the development of a nuclear clock of extremely high accuracy.

View the full Wikipedia page for Thorium-234
↑ Return to Menu