Nuclear accident in the context of "Fukushima nuclear accident"

Play Trivia Questions online!

or

Skip to study material about Nuclear accident in the context of "Fukushima nuclear accident"

Ad spacer

⭐ Core Definition: Nuclear accident

A nuclear and radiation accident is defined by the International Atomic Energy Agency (IAEA) as "an event that has led to significant consequences to people, the environment or the facility." Examples include lethal effects to individuals, large radioactivity release to the environment, or a reactor core melt. The prime example of a "major nuclear accident" is one in which a reactor core is damaged and significant amounts of radioactive isotopes are released, such as in the Chernobyl disaster in 1986 and Fukushima nuclear accident in 2011.

The impact of nuclear accidents has been a topic of debate since the first nuclear reactors were constructed in 1954 and has been a key factor in public concern about nuclear facilities. Technical measures to reduce the risk of accidents or to minimize the amount of radioactivity released to the environment have been adopted; however, human error remains, and "there have been many accidents with varying impacts as well near misses and incidents". As of 2014, there have been more than 100 serious nuclear accidents and incidents from the use of nuclear power. Fifty-seven accidents or severe incidents have occurred since the Chernobyl disaster, and about 60% of all nuclear-related accidents/severe incidents have occurred in the USA. Serious nuclear power plant accidents include the Fukushima nuclear accident (2011), the Chernobyl disaster (1986), the Three Mile Island accident (1979), and the SL-1 accident (1961). Nuclear power accidents can involve loss of life and large monetary costs for remediation work.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Nuclear accident in the context of Fukushima nuclear accident

On 11 March 2011, a major nuclear accident started at the Fukushima Daiichi Nuclear Power Plant in Ōkuma, Fukushima, Japan. The direct cause was the Tōhoku earthquake and tsunami, which resulted in electrical grid failure and damaged nearly all of the power plant's backup energy sources. The subsequent inability to sufficiently cool reactors after shutdown compromised containment and resulted in the release of radioactive contaminants into the surrounding environment. The accident was rated seven (the maximum severity) on the International Nuclear Event Scale by Nuclear and Industrial Safety Agency, following a report by the JNES (Japan Nuclear Energy Safety Organization). It is regarded as the worst nuclear incident since the Chernobyl disaster in 1986, which was also rated a seven on the International Nuclear Event Scale.

According to the United Nations Scientific Committee on the Effects of Atomic Radiation, "no adverse health effects among Fukushima residents have been documented that are directly attributable to radiation exposure from the Fukushima Daiichi nuclear plant accident". Insurance compensation was paid for one death from lung cancer, but this does not prove a causal relationship between radiation and the cancer. Six other persons have been reported as having developed cancer or leukemia. Two workers were hospitalized because of radiation burns, and several other people sustained physical injuries as a consequence of the accident.

↓ Explore More Topics
In this Dossier

Nuclear accident in the context of International Nuclear Event Scale

The International Nuclear and Radiological Event Scale (INES) was introduced in 1990 by the International Atomic Energy Agency (IAEA) in order to enable prompt communication of safety and significant information in case of nuclear accidents.

The scale is intended to be logarithmic, similar to the moment magnitude scale that is used to describe the comparative magnitude of earthquakes. Each increasing level represents an accident approximately ten times as severe as the previous level. Compared to earthquakes, where the event intensity can be quantitatively evaluated, the level of severity of a human-made disaster, such as a nuclear accident, is more subject to interpretation. Because of this subjectivity, the INES level of an incident is assigned well after the occurrence. The scale is therefore intended to assist in disaster-aid deployment.

↑ Return to Menu

Nuclear accident in the context of Radiation hardening

Radiation hardening is the process of making electronic components and circuits resistant to damage or malfunction caused by high levels of ionizing radiation (particle radiation and high-energy electromagnetic radiation), especially for environments in outer space (especially beyond low Earth orbit), around nuclear reactors and particle accelerators, or during nuclear accidents or nuclear warfare.

Most semiconductor electronic components are susceptible to radiation damage, and radiation-hardened (rad-hard) components are based on their non-hardened equivalents, with some design and manufacturing variations that reduce the susceptibility to radiation damage. Due to the low demand and the extensive development and testing required to produce a radiation-tolerant design of a microelectronic chip, the technology of radiation-hardened chips tends to lag behind the most recent developments. They also typically cost more than their commercial counterparts.

↑ Return to Menu

Nuclear accident in the context of Fukushima I nuclear accidents

On 11 March 2011, a major nuclear accident started at the Fukushima Daiichi Nuclear Power Plant in Ōkuma, Fukushima, Japan. The direct cause was the Tōhoku earthquake and tsunami, which resulted in electrical grid failure and damaged nearly all of the power plant's backup energy sources. The subsequent inability to sufficiently cool reactors after shutdown compromised containment and resulted in the release of radioactive contaminants into the surrounding environment. The accident was rated seven (the maximum severity) on the International Nuclear Event Scale by Nuclear and Industrial Safety Agency, following a report by the JNES (Japan Nuclear Energy Safety Organization). It is regarded as the worst nuclear incident since the Chernobyl disaster in 1986, which is the only other incident rated seven on the International Nuclear Event Scale.

According to the United Nations Scientific Committee on the Effects of Atomic Radiation, "no adverse health effects among Fukushima residents have been documented that are directly attributable to radiation exposure from the Fukushima Daiichi nuclear plant accident". Insurance compensation was paid for one death from lung cancer, but this does not prove a causal relationship between radiation and the cancer. Six other persons have been reported as having developed cancer or leukemia. Two workers were hospitalized because of radiation burns, and several other people sustained physical injuries as a consequence of the accident.

↑ Return to Menu