North Atlantic oscillation in the context of "Climate science"

Play Trivia Questions online!

or

Skip to study material about North Atlantic oscillation in the context of "Climate science"

Ad spacer

⭐ Core Definition: North Atlantic oscillation

The North Atlantic Oscillation (NAO) is a weather phenomenon over the North Atlantic Ocean of fluctuations in the difference of atmospheric pressure at sea level (SLP) between the Icelandic Low and the Azores High. Through fluctuations in the strength of the Icelandic Low and the Azores High, it controls the strength and direction of westerly winds and location of storm tracks across the North Atlantic.

The NAO was discovered through several studies in the late 19th and early 20th centuries. Unlike the El Niño–Southern Oscillation phenomenon in the Pacific Ocean, the NAO is a largely atmospheric mode. It is one of the most important manifestations of climate fluctuations in the North Atlantic and surrounding humid climates.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

North Atlantic oscillation in the context of Extreme weather

Extreme weather includes unexpected, unusual, severe, or unseasonal weather; weather at the extremes of the historical distribution—the range that has been seen in the past. Extreme events are based on a location's recorded weather history. The main types of extreme weather include heat waves, cold waves, droughts, and heavy precipitation or storm events, such as tropical cyclones. Extreme weather can have various effects, from natural hazards such as floods and landslides to social costs on human health and the economy. Severe weather is a particular type of extreme weather which poses risks to life and property.

Weather patterns in a given region vary with time, and so extreme weather can be attributed, at least in part, to the natural climate variability that exists on Earth. For example, the El Niño-Southern Oscillation (ENSO) or the North Atlantic oscillation (NAO) are climate phenomena that impact weather patterns worldwide. Generally speaking, one event in extreme weather cannot be attributed to any one single cause. However, certain system wide changes to global weather systems can lead to increased frequency or intensity of extreme weather events.

↑ Return to Menu

North Atlantic oscillation in the context of Climatology

Climatology (from Greek κλίμα, klima, "slope"; and -λογία, -logia) or climate science is the scientific study of Earth's climate, typically defined as weather conditions averaged over a period of at least 30 years. Climate concerns the atmospheric condition during an extended to indefinite period of time; weather is the condition of the atmosphere during a relative brief period of time. The main topics of research are the study of climate variability, mechanisms of climate changes and modern climate change. This topic of study is regarded as part of the atmospheric sciences and a subdivision of physical geography, which is one of the Earth sciences. Climatology includes some aspects of oceanography and biogeochemistry.

The main methods employed by climatologists are the analysis of observations and modelling of the physical processes that determine climate. Short term weather forecasting can be interpreted in terms of knowledge of longer-term phenomena of climate, for instance climatic cycles such as the El Niño–Southern Oscillation (ENSO), the Madden–Julian oscillation (MJO), the North Atlantic oscillation (NAO), the Arctic oscillation (AO), the Pacific decadal oscillation (PDO), and the Interdecadal Pacific Oscillation (IPO). Climate models are used for a variety of purposes from studying the dynamics of the weather and climate system to predictions of future climate.

↑ Return to Menu

North Atlantic oscillation in the context of Teleconnection

Teleconnection in atmospheric science refers to climate anomalies being related to each other at large distances (typically thousands of kilometers). The most emblematic teleconnection is that linking sea-level pressure at Tahiti and Darwin, Australia, which defines the Southern Oscillation. Another well-known teleconnection links the sea-level pressure over Iceland with the one over the Azores, traditionally defining the North Atlantic Oscillation (NAO).

↑ Return to Menu

North Atlantic oscillation in the context of Arctic oscillation

The Arctic oscillation (AO) or Northern Annular Mode/Northern Hemisphere Annular Mode (NAM) is a weather phenomenon at the Arctic pole north of 55 degrees latitude. It is an important mode of climate variability for the Northern Hemisphere. The southern hemisphere analogue is called the Antarctic oscillation or Southern Annular Mode (SAM). The index varies over time with no particular periodicity, and is characterized by non-seasonal sea-level pressure anomalies of one sign in the Arctic, balanced by anomalies of opposite sign centered at about 37–45° N.

The North Atlantic oscillation (NAO) is a close relative of the Arctic oscillation. There is debate over whether one or the other is more fundamentally representative of the atmosphere's dynamics. The NAO may be identified in a more physically meaningful way, which may carry more impact on measurable effects of changes in the atmosphere.

↑ Return to Menu

North Atlantic oscillation in the context of Icelandic Low

The Icelandic Low is a semi-permanent centre of low atmospheric pressure found between Iceland and southern Greenland and extending in the Northern Hemisphere winter into the Barents Sea. In the summer, it weakens and splits into two centres, one near Davis Strait, Labrador, and the other west of Iceland. It is a principal centre of action in the atmosphere circulation of the Northern Hemisphere, associated with frequent cyclone activity. It forms one pole of the North Atlantic oscillation, the other being the Azores High.

↑ Return to Menu

North Atlantic oscillation in the context of Azores High

The Azores High also known as North Atlantic (Subtropical) High/Anticyclone or the Bermuda- High, is a large subtropical semi-permanent centre of high atmospheric pressure typically found south of the Azores in the Atlantic Ocean, at the Horse latitudes. It forms one pole of the North Atlantic oscillation, the other being the Icelandic Low. The system influences the weather and climatic patterns of vast areas of North Africa, Western Asia, Southern Europe, and to a lesser extent, eastern North America. The aridity of the Sahara Desert and the summer drought of the Mediterranean Basin is due to the large-scale subsidence and sinking motion of air in the system.

In its summer position, the high is centered near Bermuda, and often referred to as the Bermuda High. In the Northern Hemisphere summer, the Bermuda High often migrates in the area between Bermuda and the East Coast of the United States. When the Bermuda High moves closer to the United States, this creates a deep southwest flow of hot and humid tropical air toward the East Coast of the United States. In summer, the Azores-Bermuda High is strongest. The central pressure hovers around 1024 mbar (hPa) often between Bermuda and North Carolina. Seasonally, the Bermuda High exerts its influence on the eastern United States between late May and October.

↑ Return to Menu