Heat wave in the context of "Extreme weather"

⭐ In the context of extreme weather, a heat wave is most accurately considered…

Ad spacer

⭐ Core Definition: Heat wave

A heat wave or heatwave, sometimes described as extreme heat, is a period of abnormally hot weather that lasts for multiple days. A heat wave is usually measured relative to the usual climate in the area and to normal temperatures for the season. The main difficulties with this broad definition emerge when one must quantify what the 'normal' temperature state is, and what the spatial extent of the event may or must be. Temperatures that humans from a hotter climate consider normal can be regarded as a heat wave in a cooler area. This would be the case if the warm temperatures are outside the normal climate pattern for that area. Heat waves have become more frequent, and more intense over land, across almost every area on Earth since the 1950s, the increase in frequency and duration being caused by climate change. According to the World Meteorological Organization, heat waves continued to intensify in 2024, with record-breaking temperatures reported in Europe, North America, and China. Many regions experienced consecutive days above 45°C, highlighting the increasing frequency and severity of extreme heat events worldwide..

Heat waves form when a high-pressure area in the upper atmosphere strengthens and remains over a region for several days up to several weeks. This traps heat near the earth's surface. It is usually possible to forecast heat waves, thus allowing the authorities to issue a warning in advance.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

šŸ‘‰ Heat wave in the context of Extreme weather

Extreme weather includes unexpected, unusual, severe, or unseasonal weather; weather at the extremes of the historical distribution—the range that has been seen in the past. Extreme events are based on a location's recorded weather history. The main types of extreme weather include heat waves, cold waves, droughts, and heavy precipitation or storm events, such as tropical cyclones. Extreme weather can have various effects, from natural hazards such as floods and landslides to social costs on human health and the economy. Severe weather is a particular type of extreme weather which poses risks to life and property.

Weather patterns in a given region vary with time, and so extreme weather can be attributed, at least in part, to the natural climate variability that exists on Earth. For example, the El NiƱo-Southern Oscillation (ENSO) or the North Atlantic oscillation (NAO) are climate phenomena that impact weather patterns worldwide. Generally speaking, one event in extreme weather cannot be attributed to any one single cause. However, certain system wide changes to global weather systems can lead to increased frequency or intensity of extreme weather events.

↓ Explore More Topics
In this Dossier

Heat wave in the context of Climate change

Present-day climate change includes both global warming—the ongoing increase in global average temperature—and its wider effects on Earth's climate system. Climate change in a broader sense also includes previous long-term changes to Earth's climate. The modern-day rise in global temperatures is driven by human activities, especially fossil fuel (coal, oil and natural gas) burning since the Industrial Revolution. Fossil fuel use, deforestation, and some agricultural and industrial practices release greenhouse gases. These gases absorb some of the heat that the Earth radiates after it warms from sunlight, warming the lower atmosphere. Carbon dioxide, the primary gas driving global warming, has increased in concentration by about 50% since the pre-industrial era to levels not seen for millions of years.

Climate change has an increasingly large impact on the environment. Deserts are expanding, while heat waves and wildfires are becoming more common. Amplified warming in the Arctic has contributed to thawing permafrost, retreat of glaciers and sea ice decline. Higher temperatures are also causing more intense storms, droughts, and other weather extremes. Rapid environmental change in mountains, coral reefs, and the Arctic is forcing many species to relocate or become extinct. Even if efforts to minimize future warming are successful, some effects will continue for centuries. These include ocean heating, ocean acidification and sea level rise.

↑ Return to Menu

Heat wave in the context of Natural disaster

A natural disaster is the very harmful impact on a society or community brought by natural phenomenon or hazard. Some examples of natural hazards include avalanches, droughts, earthquakes, floods, heat waves, landslides - including submarine landslides, tropical cyclones, volcanic activity and wildfires. Additional natural hazards include blizzards, dust storms, firestorms, hails, ice storms, sinkholes, thunderstorms, tornadoes and tsunamis.

A natural disaster can cause loss of life or damage property. It typically causes economic damage. How bad the damage is depends on how well people are prepared for disasters and how strong the buildings, roads, and other structures are.

↑ Return to Menu

Heat wave in the context of Drought

A drought is a period of drier-than-normal conditions. A drought can last for days, months or years. Drought often has large impacts on the ecosystems and agriculture of affected regions, and causes harm to the local economy. Annual dry seasons in the tropics significantly increase the chances of a drought developing, with subsequent increased wildfire risks. Heat waves can significantly worsen drought conditions by increasing evapotranspiration. This dries out forests and other vegetation, and increases the amount of fuel for wildfires.

Drought is a recurring feature of the climate in most parts of the world, becoming more extreme and less predictable due to climate change, which dendrochronological studies date back to 1900. There are three kinds of drought effects, environmental, economic and social. Environmental effects include the drying of wetlands, more and larger wildfires, loss of biodiversity.

↑ Return to Menu

Heat wave in the context of Climate change in the Middle East and North Africa

In 2018, the MENA region emitted 3.2 billion tonnes of carbon dioxide and produced 8.7% of global greenhouse gas emissions (GHG) despite making up only 6% of the global population. These emissions are mostly from the energy sector, an integral component of many Middle Eastern and North African economies due to the extensive oil and natural gas reserves that are found within the region. The Middle East region is one of the most vulnerable to climate change. The impacts include increase in drought conditions, aridity, heatwaves and sea level rise.

Sharp global temperature and sea level changes, shifting precipitation patterns and increased frequency of extreme weather events are some of the main impacts of climate change as identified by the Intergovernmental Panel on Climate Change (IPCC). The MENA region is especially vulnerable to such impacts due to its arid and semi-arid environment, facing climatic challenges such as low rainfall, high temperatures and dry soil. The climatic conditions that foster such challenges for MENA are projected by the IPCC to worsen throughout the 21st century. If greenhouse gas emissions are not significantly reduced, part of the MENA region risks becoming uninhabitable before the year 2100.

↑ Return to Menu

Heat wave in the context of Effects of climate change on the water cycle

The effects of climate change on the water cycle are profound and have been described as an intensification or a strengthening of the water cycle (also called the hydrologic cycle). This effect has been observed since at least 1980. One example is when heavy rain events become even stronger. The effects of climate change on the water cycle have important negative effects on the availability of freshwater resources, as well as other water reservoirs such as oceans, ice sheets, the atmosphere and soil moisture. The water cycle is essential to life on Earth and plays a large role in the global climate system and ocean circulation. The warming of our planet is expected to be accompanied by changes in the water cycle for various reasons. For example, a warmer atmosphere can contain more water vapor which has effects on evaporation and rainfall.

The underlying cause of the intensifying water cycle is the increased amount of greenhouse gases in the atmosphere, which lead to a warmer atmosphere through the greenhouse effect. Fundamental laws of physics explain how the saturation vapor pressure in the atmosphere increases by 7% when temperature rises by 1 °C. This relationship is known as the Clausius-Clapeyron equation.

↑ Return to Menu