Norepinephrine in the context of "Beta blocker"

Play Trivia Questions online!

or

Skip to study material about Norepinephrine in the context of "Beta blocker"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Norepinephrine in the context of Fight-or-flight response

The fight-or-flight or the fight-flight-freeze-or-fawn (also called hyperarousal or the acute stress response) is a physiological reaction that occurs in response to a perceived harmful event, attack, or threat to survival. It was first described by Walter Bradford Cannon in 1914 to which he referred to as "the necessities of fighting or flight" in 1915. His theory states that animals react to threats with a general discharge of the sympathetic nervous system, preparing the animal for fighting or fleeing. More specifically, the adrenal medulla produces a hormonal cascade that results in the secretion of catecholamines, especially norepinephrine and epinephrine. The hormones estrogen, testosterone, and cortisol, as well as the neurotransmitters dopamine and serotonin, also affect how organisms react to stress. The hormone osteocalcin might also play a part.

This response is recognised as the first stage of the general adaptation syndrome that regulates stress responses among vertebrates and other organisms.

↑ Return to Menu

Norepinephrine in the context of Anger

Anger is an intense emotional state involving a strong, uncomfortable and non-cooperative response to a perceived provocation, hurt, or threat.

A person experiencing anger will often experience physical effects, such as increased heart rate, elevated blood pressure, and increased levels of the stress hormones adrenaline and noradrenaline. Some view anger as an emotion that triggers part of the fight or flight response. Anger becomes the predominant feeling behaviorally, cognitively, and physiologically when a person makes the conscious choice to take action to immediately stop the threatening behavior of another outside force.

↑ Return to Menu

Norepinephrine in the context of Neuromodulation

Neuromodulation is the physiological process by which a given neuron uses one or more chemicals to regulate diverse populations of neurons. Neuromodulators typically bind to metabotropic, G-protein coupled receptors (GPCRs) to initiate a second messenger signaling cascade that induces a broad, long-lasting signal. This modulation can last for hundreds of milliseconds to several minutes. Some of the effects of neuromodulators include altering intrinsic firing activity, increasing or decreasing voltage-dependent currents, altering synaptic efficacy, increasing bursting activity and reconfiguring synaptic connectivity.

Major neuromodulators in the central nervous system include: dopamine, serotonin, acetylcholine, histamine, norepinephrine, nitric oxide, and several neuropeptides. Cannabinoids can also be powerful CNS neuromodulators. Neuromodulators can be packaged into vesicles and released by neurons, secreted as hormones and delivered through the circulatory system. A neuromodulator can be conceptualized as a neurotransmitter that is not reabsorbed by the pre-synaptic neuron or broken down into a metabolite. Some neuromodulators end up spending a significant amount of time in the cerebrospinal fluid (CSF), influencing (or "modulating") the activity of several other neurons in the brain.

↑ Return to Menu

Norepinephrine in the context of Stimulant

Stimulants (also known as central nervous system stimulants, or psychostimulants, or colloquially as uppers) are a class of psychoactive drugs that increase alertness. They are used for various purposes, such as enhancing attention, motivation, cognition, mood, and physical performance. Some stimulants occur naturally, while others are exclusively synthetic. Common stimulants include caffeine, nicotine, cocaine (including crack cocaine), amphetamine/methamphetamine, methylphenidate, and modafinil. Stimulants may be subject to varying forms of regulation, or outright prohibition, depending on jurisdiction. Most stimulants are highly addictive and damage health when addicted.

Stimulants increase activity in the sympathetic nervous system, either directly or indirectly. Prototypical stimulants increase synaptic concentrations of excitatory neurotransmitters, particularly norepinephrine and dopamine (e.g., methylphenidate). Other stimulants work by binding to the receptors of excitatory neurotransmitters (e.g., nicotine) or by blocking the activity of endogenous agents that promote sleep (e.g., caffeine). Stimulants can affect various functions, including arousal, attention, the reward system, learning, memory, and emotion. Effects range from mild stimulation to euphoria, depending on the specific drug, dose, route of administration, and inter-individual characteristics.

↑ Return to Menu

Norepinephrine in the context of Amphetamine

Amphetamine is a central nervous system (CNS) stimulant that is used in the treatment of attention deficit hyperactivity disorder (ADHD), narcolepsy, and obesity; it is also used to treat binge eating disorder in the form of its inactive prodrug lisdexamfetamine. Amphetamine was discovered as a chemical in 1887 by Lazăr Edeleanu, and then as a drug in the late 1920s. It exists as two enantiomers: levoamphetamine and dextroamphetamine. Amphetamine properly refers to a specific chemical, the racemic free base, which is equal parts of the two enantiomers in their pure amine forms. The term is frequently used informally to refer to any combination of the enantiomers, or to either of them alone. Historically, it has been used to treat nasal congestion and depression. Amphetamine is also used as an athletic performance enhancer and cognitive enhancer, and recreationally as an aphrodisiac and euphoriant. It is a prescription drug in many countries, and unauthorized possession and distribution of amphetamine are often tightly controlled due to the significant health risks associated with recreational use.

The first amphetamine pharmaceutical was Benzedrine, a brand which was used to treat a variety of conditions. Pharmaceutical amphetamine is prescribed as racemic amphetamine, Adderall, dextroamphetamine, or the inactive prodrug lisdexamfetamine. Amphetamine increases monoamine and excitatory neurotransmission in the brain, with its most pronounced effects targeting the norepinephrine and dopamine neurotransmitter systems.

↑ Return to Menu

Norepinephrine in the context of Nicotine

Nicotine is an alkaloid found primarily in plants of the nightshade family, notably in tobacco and Duboisia hopwoodii. In addition to extraction from tobacco, it is synthesized. Nicotine is used recreationally for its stimulant and anxiolytic effects. In tobacco leaves, nicotine constitutes about 0.6–3.0% of the dry weight, and smaller, trace quantities occur in other Solanaceae crops such as tomatoes, potatoes, and eggplants. In pure form, nicotine is a colorless to yellowish, oily liquid that readily penetrates biological membranes and acts as a potent neurotoxin in insects, where it serves as a antiherbivore toxin. Historically, it was widely used as an insecticide, and its structure provided the basis for synthetic neonicotinoid pesticides.

In humans, nicotine acts primarily as a stimulant by binding to and activating nicotinic acetylcholine receptors (nAChRs) in the central nervous system and peripheral tissues. This results in the release of neurotransmitters such as dopamine, acetylcholine, and norepinephrine, producing effects including increased alertness, reduced anxiety, and mild euphoria. Nicotine is typically consumed through tobacco smoking, vaping, or other nicotine delivery systems. An average cigarette yields about 2 mg of absorbed nicotine, a dose sufficient to produce reinforcement and dependence while remaining far below toxic levels.

↑ Return to Menu

Norepinephrine in the context of Arousal

Arousal is the physiological and psychological state of being awoken or of sense organs stimulated to a point of perception. It involves activation of the ascending reticular activating system (ARAS) in the brain, which mediates wakefulness, the autonomic nervous system, and the endocrine system, leading to increased heart rate and blood pressure and a condition of sensory alertness, desire, mobility, and reactivity.

Arousal is mediated by several neural systems. Wakefulness is regulated by the ARAS, which is composed of projections from five major neurotransmitter systems that originate in the brainstem and form connections extending throughout the cortex; activity within the ARAS is regulated by neurons that release the neurotransmitters norepinephrine, acetylcholine, dopamine, serotonin and histamine.

↑ Return to Menu

Norepinephrine in the context of Sympathoadrenal system

The sympathoadrenal system is a physiological connection between the sympathetic nervous system and the adrenal medulla and is crucial in an organism's physiological response to outside stimuli. When the body receives sensory information, the sympathetic nervous system sends a signal to preganglionic nerve fibers, which activate the adrenal medulla through acetylcholine. Once activated, norepinephrine and epinephrine are released directly into the blood by adrenomedullary cells where they act as the bodily mechanism for "fight-or-flight" responses. Because of this, the sympathoadrenal system plays a large role in maintaining glucose levels, sodium levels, blood pressure, and various other metabolic pathways that couple with bodily responses to the environment. During numerous diseased states, such as hypoglycemia or even stress, the body's metabolic processes are skewed. The sympathoadrenal system works to return the body to homeostasis through the activation or inactivation of the adrenal gland. However, more severe disorders of the sympathoadrenal system such as pheochromocytoma (a tumor on the adrenal medulla) can affect the body's ability to maintain a homeostatic state. In these cases, curative agents such as adrenergic agonists and antagonists are used to modify epinephrine and norepinephrine levels released by the adrenal medulla.

↑ Return to Menu