Skeletal muscle in the context of "Norepinephrine"

Play Trivia Questions online!

or

Skip to study material about Skeletal muscle in the context of "Norepinephrine"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Skeletal muscle in the context of Facial expression

Facial expression is the motion and positioning of the muscles beneath the skin of the face. These movements convey the emotional state of an individual to observers and are a form of nonverbal communication. They are a primary means of conveying social information between humans, but they also occur in most other mammals and some other animal species.

Humans can adopt a facial expression voluntarily or involuntarily, and the neural mechanisms responsible for controlling the expression differ in each case. Voluntary facial expressions are often socially conditioned and follow a cortical route in the brain. Conversely, involuntary facial expressions are believed to be innate and follow a subcortical route in the brain. Facial recognition can be an emotional experience for the brain and the amygdala is highly involved in the recognition process.

↑ Return to Menu

Skeletal muscle in the context of Paralysis

Paralysis (pl.: paralyses; also known as plegia) is a loss of motor function in one or more muscles. Paralysis can also be accompanied by a loss of feeling (sensory loss) in the affected area if there is sensory damage. In the United States, roughly 1 in 50 people have been diagnosed with some form of permanent or transient paralysis. The word "paralysis" derives from the Greek παράλυσις, meaning "disabling of the nerves" from παρά (para) meaning "beside, by" and λύσις (lysis) meaning "making loose". A paralysis accompanied by involuntary tremors is usually called "palsy".

↑ Return to Menu

Skeletal muscle in the context of Limb (anatomy)

A limb (from Old English lim, meaning "body part") is a jointed, muscled appendage of a tetrapod vertebrate animal used for weight-bearing, terrestrial locomotion and physical interaction with other objects. The distalmost portion of a limb is known as its extremity. The limbs' bony endoskeleton, known as the appendicular skeleton, is homologous among all tetrapods, who use their limbs for walking, running and jumping, swimming, climbing, grasping, touching and striking.

All tetrapods have four limbs that are organized into two bilaterally symmetrical pairs, with one pair at each end of the torso, which phylogenetically correspond to the four paired fins (pectoral and pelvic fins) of their fish (sarcopterygian) ancestors. The cranial pair (i.e. closer to the head) of limbs are known as the forelimbs or front legs, and the caudal pair (i.e. closer to the tail or coccyx) are the hindlimbs or back legs. In animals with a more erect bipedal posture (mainly hominid primates, particularly humans), the forelimbs and hindlimbs are often called upper and lower limbs, respectively. The fore-/upper limbs are connected to the thoracic cage via the pectoral/shoulder girdles, and the hind-/lower limbs are connected to the pelvis via the hip joints. Many animals, especially the arboreal species, have prehensile forelimbs adapted for grasping and climbing, while some (mostly primates) can also use hindlimbs for grasping. Some animals (birds and bats) have expanded forelimbs (and sometimes hindlimbs as well) with specialized feathers or membranes to achieve lift and fly. Aquatic and semiaquatic tetrapods usually have limb features (such as webbings) adapted to better provide propulsion in water, while marine mammals and sea turtles have convergently evolved flattened, paddle-like limbs known as flippers.

↑ Return to Menu

Skeletal muscle in the context of Internal intercostal muscles

The internal intercostal muscles (intercostales interni) are a group of skeletal muscles located between the ribs. They are eleven in number on either side. They commence anteriorly at the sternum, in the intercostal spaces between the cartilages of the true ribs, and at the anterior extremities of the cartilages of the false ribs, and extend backward as far as the angles of the ribs, hence they are continued to the vertebral column by thin aponeuroses, the posterior intercostal membranes. They pull the sternum and ribs upward and inward.

↑ Return to Menu

Skeletal muscle in the context of Blood sugar level

The blood sugar level, blood sugar concentration, blood glucose level, or glycemia is the measure of glucose concentrated in the blood. The body tightly regulates blood glucose levels as a part of metabolic homeostasis.

For a 70 kg (154 lb) human, approximately four grams of dissolved glucose (also called "blood glucose") is maintained in the blood plasma at all times. Glucose that is not circulating in the blood is stored in skeletal muscle and liver cells in the form of glycogen; in fasting individuals, blood glucose is maintained at a constant level by releasing just enough glucose from these glycogen stores in the liver and skeletal muscle in order to maintain homeostasis. Glucose can be transported from the intestines or liver to other tissues in the body via the bloodstream. Cellular glucose uptake is primarily regulated by insulin, a hormone produced in the pancreas. Once inside the cell, the glucose can now act as an energy source as it undergoes the process of glycolysis.

↑ Return to Menu

Skeletal muscle in the context of Muscle tissue

Muscle is a soft tissue, one of the four basic types of animal tissue. There are three types of muscle tissue in vertebrates: skeletal muscle, cardiac muscle, and smooth muscle. Muscle tissue gives skeletal muscles the ability to contract. Muscle tissue contains special contractile proteins called actin and myosin which interact to cause movement. Among many other muscle proteins present are two regulatory proteins, troponin and tropomyosin. Muscle is formed during embryonic development, in a process known as myogenesis.

Skeletal muscle tissue is striated, consisting of elongated, multinucleate muscle cells called muscle fibers, and is responsible for movements of the body. Other tissues in skeletal muscle include tendons and perimysium. Smooth and cardiac muscle contract involuntarily, without conscious intervention. These muscle types may be activated both through the interaction of the central nervous system as well as by innervation from peripheral plexus or endocrine (hormonal) activation. Skeletal muscle only contracts voluntarily, under the influence of the central nervous system. Reflexes are a form of non-conscious activation of skeletal muscles, but nonetheless arise through activation of the central nervous system, albeit not engaging cortical structures until after the contraction has occurred.

↑ Return to Menu

Skeletal muscle in the context of Arm

In human anatomy, the arm refers to the upper limb in common usage, although academically the term specifically means the upper arm between the glenohumeral joint (shoulder joint) and the elbow joint. The distal part of the upper arm between the elbow and the radiocarpal joint (wrist joint) is known as the forearm or "lower" arm, and the extremity beyond the wrist is the hand.

By anatomical definitions, the bones, ligaments and skeletal muscles of the shoulder girdle, as well as the axilla between them, are considered parts of the upper limb, and thus also components of the arm. The Latin term brachium, which serves as a root word for naming many anatomical structures, may refer to either the upper arm as a whole or to the upper arm on its own.

↑ Return to Menu

Skeletal muscle in the context of Tendon

A tendon or sinew is a tough band of dense fibrous connective tissue that connects muscle to bone. It sends the mechanical forces of muscle contraction to the skeletal system, while withstanding tension.

Tendons, like ligaments, are made of collagen. The difference is that ligaments connect bone to bone, while tendons connect muscle to bone. There are about 4,000 tendons in the adult human body.

↑ Return to Menu

Skeletal muscle in the context of Physical activity

Physical activity is defined as any movement produced by skeletal muscles that requires energy expenditure. Physical activity encompasses all activities, at any intensity, performed during any time of day or night. It includes both voluntary exercise and incidental activity integrated into the daily routine.This integrated activity may not be planned, structured, repetitive or purposeful for the improvement of physical fitness, and may include activities such as walking to the local shop, cleaning, working, active transport etc.

Lack of physical activity is associated with a range of negative health outcomes, whereas increased physical activity can improve physical and mental health, as well as cognitive and cardiovascular health. There are at least eight investments that work to increase population-level physical activity, including whole-of-school programmes, active transport, active urban design, healthcare, public education and mass media, sport for all, workplaces and community-wide programmes. Physical activity increases energy expenditure and is a key regulator in controlling body weight (see Summermatter cycle for more). In human beings, differences among individuals in the amount of physical activity have a substantial genetic basis.

↑ Return to Menu