Nonnegative integer in the context of 3


Nonnegative integer in the context of 3

Nonnegative integer Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Nonnegative integer in the context of "3"


⭐ Core Definition: Nonnegative integer

In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. The terms positive integers, non-negative integers, whole numbers, and counting numbers are also used. The set of the natural numbers is commonly denoted by a bold N or a blackboard bold .

The natural numbers are used for counting, and for labeling the result of a count, like "there are seven days in a week", in which case they are called cardinal numbers. They are also used to label places in an ordered series, like "the third day of the month", in which case they are called ordinal numbers. Natural numbers may also be used to label, like the jersey numbers of a sports team; in this case, they have no specific mathematical properties and are called nominal numbers.

↓ Menu
HINT:

In this Dossier

Nonnegative integer in the context of Polynomial

In mathematics, a polynomial is a mathematical expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication and exponentiation to nonnegative integer powers, and has a finite number of terms. An example of a polynomial of a single indeterminate is . An example with three indeterminates is .

Polynomials appear in many areas of mathematics and science. For example, they are used to form polynomial equations, which encode a wide range of problems, from elementary word problems to complicated scientific problems; they are used to define polynomial functions, which appear in settings ranging from basic chemistry and physics to economics and social science; and they are used in calculus and numerical analysis to approximate other functions. In advanced mathematics, polynomials are used to construct polynomial rings and algebraic varieties, which are central concepts in algebra and algebraic geometry.

View the full Wikipedia page for Polynomial
↑ Return to Menu

Nonnegative integer in the context of Decimal expansion

A decimal representation of a non-negative real number r is its expression as a sequence of symbols consisting of decimal digits traditionally written with a single separator: Here . is the decimal separator, k is a nonnegative integer, and are digits, which are symbols representing integers in the range 0, ..., 9.

Commonly, if The sequence of the —the digits after the dot—is generally infinite. If it is finite, the lacking digits are assumed to be 0. If all are 0, the separator is also omitted, resulting in a finite sequence of digits, which represents a natural number.

View the full Wikipedia page for Decimal expansion
↑ Return to Menu

Nonnegative integer in the context of Binomial theorem

In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial. According to the theorem, the power expands into a polynomial with terms of the form , where the exponents and are nonnegative integers satisfying and the coefficient of each term is a specific positive integer depending on and . For example, for ,

The coefficient in each term is known as the binomial coefficient or (the two have the same value). These coefficients for varying and can be arranged to form Pascal's triangle. These numbers also occur in combinatorics, where gives the number of different combinations (i.e. subsets) of elements that can be chosen from an -element set. Therefore is usually pronounced as " choose ".

View the full Wikipedia page for Binomial theorem
↑ Return to Menu