Non-abelian group in the context of "Conjugation (group theory)"

Play Trivia Questions online!

or

Skip to study material about Non-abelian group in the context of "Conjugation (group theory)"

Ad spacer

⭐ Core Definition: Non-abelian group

In mathematics, and specifically in group theory, a non-abelian group, sometimes called a non-commutative group, is a group (G, ∗) in which there exists at least one pair of elements a and b of G, such that a ∗ b ≠ b ∗ a. This class of groups contrasts with the abelian groups, where all pairs of group elements commute.

Non-abelian groups are pervasive in mathematics and physics. One of the simplest examples of a non-abelian group is the dihedral group of order 6. It is the smallest finite non-abelian group. A common example from physics is the rotation group SO(3) in three dimensions (for example, rotating something 90 degrees along one axis and then 90 degrees along a different axis is not the same as doing them in reverse order).

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Non-abelian group in the context of Conjugation (group theory)

In mathematics, especially group theory, two elements and of a group are conjugate if there is an element in the group such that This is an equivalence relation whose equivalence classes are called conjugacy classes. In other words, each conjugacy class is closed under for all elements in the group.

Members of the same conjugacy class cannot be distinguished by using only the group structure, and therefore share many properties. The study of conjugacy classes of non-abelian groups is fundamental for the study of their structure. For an abelian group, each conjugacy class is a set containing one element (singleton set).

↓ Explore More Topics
In this Dossier

Non-abelian group in the context of Abelian group

In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commutative. With addition as an operation, the integers and the real numbers form abelian groups, and the concept of an abelian group may be viewed as a generalization of these examples. Abelian groups are named after the Norwegian mathematician Niels Henrik Abel.

The concept of an abelian group underlies many fundamental algebraic structures, such as fields, rings, vector spaces, and algebras. The theory of abelian groups is generally simpler than that of their non-abelian counterparts, and finite abelian groups are very well understood and fully classified.

↑ Return to Menu

Non-abelian group in the context of Topological order

In physics, topological order describes a state or phase of matter that arises in a system with non-local interactions, such as entanglement in quantum mechanics, and floppy modes in elastic systems. Whereas classical phases of matter such as gases and solids correspond to microscopic patterns in the spatial arrangement of particles arising from short range interactions, topological orders correspond to patterns of long-range quantum entanglement. States with different topological orders (or different patterns of long range entanglements) cannot change into each other without a phase transition.

Technically, topological order occurs at zero temperature. Various topologically ordered states have interesting properties, such as (1) ground state degeneracy and fractional statistics or non-abelian group statistics that can be used to realize a topological quantum computer; (2) perfect conducting edge states that may have important device applications; (3) emergent gauge field and Fermi statistics that suggest a quantum information origin of elementary particles; (4) topological entanglement entropy that reveals the entanglement origin of topological order, etc. Topological order is important in the study of several physical systems such as spin liquids, and the quantum Hall effect, along with potential applications to fault-tolerant quantum computation.

↑ Return to Menu

Non-abelian group in the context of Rubik's Cube group

The Rubik's Cube group represents the mathematical structure of the Rubik's Cube mechanical puzzle. Each element of the set corresponds to a cube move, which is the effect of any sequence of rotations of the cube's faces. With this representation, not only can any cube move be represented, but any position of the cube as well, by detailing the cube moves required to rotate the solved cube into that position. Indeed with the solved position as a starting point, there is a one-to-one correspondence between each of the legal positions of the Rubik's Cube and the elements of . The group operation is the composition of cube moves, corresponding to the result of performing one cube move after another.

The Rubik's Cube is constructed by labeling each of the 48 non-center facets with the integers 1 to 48. Each configuration of the cube can be represented as a permutation of the labels 1 to 48, depending on the position of each facet. Using this representation, the solved cube is the identity permutation which leaves the cube unchanged, while the twelve cube moves that rotate a layer of the cube 90 degrees are represented by their respective permutations. The Rubik's Cube group is the subgroup of the symmetric group generated by the six permutations corresponding to the six clockwise cube moves. With this construction, any configuration of the cube reachable through a sequence of cube moves is within the group. Its operation refers to the composition of two permutations; within the cube, this refers to combining two sequences of cube moves together, doing one after the other. The Rubik's Cube group is non-abelian as composition of cube moves is not commutative; doing a sequence of cube moves in a different order can result in a different configuration.

↑ Return to Menu

Non-abelian group in the context of Poincaré group

The Poincaré group, named after Henri Poincaré (1905), was first defined by Hermann Minkowski (1908) as the isometry group of Minkowski spacetime. It is a ten-dimensional non-abelian Lie group that is of importance as a model in our understanding of the most basic fundamentals of physics.

↑ Return to Menu

Non-abelian group in the context of Yang–Mills theory

Yang–Mills theory is a quantum field theory for nuclear binding devised by Chen Ning Yang and Robert Mills in 1953, as well as a generic term for the class of similar theories. The Yang–Mills theory is a gauge theory based on a special unitary group SU(n), or more generally any compact Lie group. A Yang–Mills theory seeks to describe the behavior of elementary particles using these non-abelian Lie groups and is at the core of the unification of the electromagnetic force and weak forces (i.e. U(1) × SU(2)) as well as quantum chromodynamics, the theory of the strong force (based on SU(3)). Thus it forms the basis of the understanding of the Standard Model of particle physics.

↑ Return to Menu