Nitrogen oxide in the context of "Nitrogen oxides"

Play Trivia Questions online!

or

Skip to study material about Nitrogen oxide in the context of "Nitrogen oxides"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<

👉 Nitrogen oxide in the context of Nitrogen oxides

In atmospheric chemistry, NOx is shorthand for nitric oxide (NO) and nitrogen dioxide (NO2), the nitrogen oxides that are most relevant for air pollution. These gases contribute to the formation of smog and acid rain, as well as affecting tropospheric ozone.

NOx gases are usually produced from the reaction between nitrogen and oxygen during combustion of fuels, such as hydrocarbons, in air; especially at high temperatures, such as in car engines. In areas of high motor vehicle traffic, such as in large cities, the nitrogen oxides emitted can be a significant source of air pollution. NOx gases are also produced naturally by lightning.

↓ Explore More Topics
In this Dossier

Nitrogen oxide in the context of Nitrous oxide

Nitrous oxide (dinitrogen oxide or dinitrogen monoxide), commonly known as laughing gas, nitrous, or factitious air, among others, is a chemical compound, an oxide of nitrogen with the formula N
2
O
. At room temperature, it is a colourless non-flammable gas, and has a slightly sweet scent and taste. At elevated temperatures, nitrous oxide is a powerful oxidiser similar to molecular oxygen.

↑ Return to Menu

Nitrogen oxide in the context of Smog

Smog, or smoke fog, is a type of intense air pollution. The word "smog" was coined in the early 20th century, and is a portmanteau of the words smoke and fog to refer to smoky fog due to its opacity, and odour. The word was then intended to refer to what was sometimes known as pea soup fog, a familiar and serious problem in London from the 19th century to the mid-20th century, where it was commonly known as a London particular or London fog. This kind of visible air pollution is composed of nitrogen oxides, sulfur oxide, ozone, smoke and other particulates. Man-made smog is derived from coal combustion emissions, vehicular emissions, industrial emissions, forest and agricultural fires and photochemical reactions of these emissions.

Smog is often categorized as being either summer smog or winter smog. Summer smog is primarily associated with the photochemical formation of ozone. During the summer season when the temperatures are warmer and there is more sunlight present, photochemical smog is the dominant type of smog formation. During the winter months when the temperatures are colder, and atmospheric inversions are common, there is an increase in coal and other fossil fuel usage to heat homes and buildings. These combustion emissions, together with the lack of pollutant dispersion under inversions, characterize winter smog formation. Smog formation in general relies on both primary and secondary pollutants. Primary pollutants are emitted directly from a source, such as emissions of sulfur dioxide from coal combustion. Secondary pollutants, such as ozone, are formed when primary pollutants undergo chemical reactions in the atmosphere.

↑ Return to Menu

Nitrogen oxide in the context of Vapor

In physics, a vapor (American English) or vapour (Commonwealth English; see spelling differences) is a substance in the gas phase at a temperature lower than its critical temperature, which means that the vapor can be condensed to a liquid by increasing the pressure on it without reducing the temperature of the vapor. A vapor is different from an aerosol. An aerosol is a suspension of tiny particles of liquid, solid, or both within a gas.

For example, water has a critical temperature of 647 K (374 °C; 705 °F), which is the highest temperature at which liquid water can exist at any pressure. In the atmosphere at ordinary temperatures gaseous water (known as water vapor) will condense into a liquid if its partial pressure is increased sufficiently.

↑ Return to Menu

Nitrogen oxide in the context of Nitric acid

Nitric acid is an inorganic compound with the formula HNO3. It is a highly corrosive mineral acid. The compound is colorless, but samples tend to acquire a yellow cast over time due to decomposition into oxides of nitrogen. Most commercially available nitric acid has a concentration of 68% in water. When the solution contains more than 86% HNO3, it is referred to as fuming nitric acid. Depending on the amount of nitrogen dioxide present, fuming nitric acid is further characterized as red fuming nitric acid at concentrations above 86%, or white fuming nitric acid at concentrations above 95%.

↑ Return to Menu

Nitrogen oxide in the context of Acid rain

Acid rain is rain or any other form of precipitation that is unusually acidic, meaning that it has elevated levels of hydrogen ions (low pH). Most water, including drinking water, has a neutral pH that exists between 6.5 and 8.5, but acid rain has a pH level lower than this and ranges from 4–5 on average. The more acidic the acid rain is, the lower its pH is. Acid rain can have harmful effects on plants, aquatic animals, and infrastructure. Acid rain is caused by emissions of sulfur dioxide and nitrogen oxide, which react with the water molecules in the atmosphere to produce acids.

Acid rain has been shown to have adverse impacts on forests, freshwaters, soils, microbes, insects and aquatic life-forms. In ecosystems, persistent acid rain reduces tree bark durability, leaving flora more susceptible to environmental stressors such as drought, heat/cold and pest infestation. Acid rain is also capable of detrimenting soil composition by stripping it of nutrients such as calcium and magnesium which play a role in plant growth and maintaining healthy soil. In terms of human infrastructure, acid rain also causes paint to peel, corrosion of steel structures such as bridges, and weathering of stone buildings and statues as well as having impacts on human health.

↑ Return to Menu

Nitrogen oxide in the context of Bunker fuel

Heavy fuel oil (HFO) is a fuel oil of a tar-like consistency. Also known as bunker fuel, or residual fuel oil, HFO is the residual mixture leftover from the distillation and cracking of crude oil in oil refineries. Generally, it has a boiling temperature between 350 and 500 °C and a significantly increased viscosity compared to diesel. As it is created through the extraction of more valuable components of its petroleum precursor, HFO contains various undesirable compounds and elements, which includes aromatics, sulfur, nitrogen, vanadium, and others. These non-hydrocarbon contaminants significantly increase toxic gas and particulate emissions upon combustion, such as sulfur dioxide, carbon monoxide, and nitrogen oxides.

As the fuel is cheap, it is predominantly utilized for marine vessel propulsion in marine diesel engines due to its relatively low cost compared to cleaner fuel sources such as diesel fuel or distillates. The emission-heavy nature of the fuel also contributes to this method of usage; marine vessels, such as oil tankers and cruise ships, are generally distant from population centers, sailing in open seas and oceans for the majority of the time, minimizing the exposure of humans to harmful aerosols and gaseous emissions. Ships utilizing heavy fuel oil may switch to cleaner alternatives such as diesel when approaching land. The use and carrying of HFO in seafaring vessels presents several environmental concerns, such as accidental oil spills due to adverse weather or routine handling, which are common due to their universal and dominant usage in marine transportation.

↑ Return to Menu

Nitrogen oxide in the context of Nitrogen dioxide

Nitrogen dioxide is a chemical compound with the formula NO2. One of several nitrogen oxides, nitrogen dioxide is a reddish-brown gas. It is a paramagnetic, bent molecule with C2v point group symmetry. Industrially, NO2 is an intermediate in the synthesis of nitric acid, millions of tons of which are produced each year, primarily for the production of fertilizers.

Nitrogen dioxide is poisonous and can be fatal if inhaled in large quantities. Cooking with a gas stove produces nitrogen dioxide which causes poorer indoor air quality. Combustion of gas can lead to increased concentrations of nitrogen dioxide throughout the home environment which is linked to respiratory issues and diseases. The LC50 (median lethal dose) for humans has been estimated to be 174 ppm for a 1-hour exposure. It is also included in the NOx family of atmospheric pollutants.

↑ Return to Menu