Nitrogen gas in the context of "Asphyxiant gas"

Play Trivia Questions online!

or

Skip to study material about Nitrogen gas in the context of "Asphyxiant gas"

Ad spacer

⭐ Core Definition: Nitrogen gas

Nitrogen is a chemical element; it has symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at seventh in total abundance in the Milky Way and the Solar System. At standard temperature and pressure, two atoms of the element bond to form N2, a colourless and odourless diatomic gas. N2 forms about 78% of Earth's atmosphere, making it the most abundant chemical species in air. Because of the volatility of nitrogen compounds, nitrogen is relatively rare in the solid parts of the Earth.

It was first discovered and isolated by Scottish physician Daniel Rutherford in 1772 and independently by Carl Wilhelm Scheele and Henry Cavendish at about the same time. The name nitrogène was suggested by French chemist Jean-Antoine-Claude Chaptal in 1790 when it was found that nitrogen was present in nitric acid and nitrates. Antoine Lavoisier suggested instead the name azote, from the Ancient Greek: ἀζωτικός "no life", as it is an asphyxiant gas; this name is used in a number of languages, and appears in the English names of some nitrogen compounds such as hydrazine, azides and azo compounds.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Nitrogen gas in the context of Biogeochemical cycle

A biogeochemical cycle, or more generally a cycle of matter, is the movement and transformation of chemical elements and compounds between living organisms, the atmosphere, and the Earth's crust. Major biogeochemical cycles include the carbon cycle, the nitrogen cycle and the water cycle. In each cycle, the chemical element or molecule is transformed and cycled by living organisms and through various geological forms and reservoirs, including the atmosphere, the soil and the oceans. It can be thought of as the pathway by which a chemical substance cycles (is turned over or moves through) the biotic compartment and the abiotic compartments of Earth. The biotic compartment is the biosphere and the abiotic compartments are the atmosphere, lithosphere and hydrosphere.

For example, in the carbon cycle, atmospheric carbon dioxide is absorbed by plants through photosynthesis, which converts it into organic compounds that are used by organisms for energy and growth. Carbon is then released back into the atmosphere through respiration and decomposition. Additionally, carbon is stored in fossil fuels and is released into the atmosphere through human activities such as burning fossil fuels. In the nitrogen cycle, atmospheric nitrogen gas is converted by plants into usable forms such as ammonia and nitrates through the process of nitrogen fixation. These compounds can be used by other organisms, and nitrogen is returned to the atmosphere through denitrification and other processes. In the water cycle, the universal solvent water evaporates from land and oceans to form clouds in the atmosphere, and then precipitates back to different parts of the planet. Precipitation can seep into the ground and become part of groundwater systems used by plants and other organisms, or can runoff the surface to form lakes and rivers. Subterranean water can then seep into the ocean along with river discharges, rich with dissolved and particulate organic matter and other nutrients.

↑ Return to Menu

Nitrogen gas in the context of Free element

In chemistry, a free element is a chemical element that is not combined with or chemically bonded to other elements. These may either be chemically inert, or may form bonds with atoms of the same element.

Metals, non-metals, and noble gases can all be found as free elements. Noble gases such as helium and argon are found in the monoatomic state due to the low reactivity of these atoms. Similarly, noble metals such as gold and platinum are also found in the pure state naturally. Non-metals are rarely found as free elements in the solid state — carbon is a notable exception, as it may be found as diamond and graphite. However, they commonly exist as gases, examples of which include molecular oxygen, ozone, and nitrogen, which together make up approximately 99% of the atmosphere. Because of their reactivity, the halogens do not naturally occur in the free elemental state, but they are both widespread and abundant in the form of their halide ions. They are, however, stable in their diatomic forms.

↑ Return to Menu

Nitrogen gas in the context of Ternary plot

A ternary plot, ternary graph, triangle plot, simplex plot, or Gibbs triangle is a barycentric plot on three variables which sum to a constant. It graphically depicts the ratios of the three variables as positions in an equilateral triangle. It is used in physical chemistry, petrology, mineralogy, metallurgy, and other physical sciences to show the compositions of systems composed of three species. Ternary plots are tools for analyzing compositional data in the three-dimensional case.

In population genetics, a triangle plot of genotype frequencies is called a de Finetti diagram. In game theory and convex optimization, it is often called a simplex plot.

↑ Return to Menu