A neutron star is the gravitationally collapsed core of a massive supergiant star. It results from the supernova explosion of a massive star—combined with gravitational collapse—that compresses the core past white dwarf star density to that of atomic nuclei. Surpassed only by black holes, neutron stars are the second smallest and densest known class of stellar objects. Neutron stars have a radius on the order of 10 kilometers (6 miles) and a mass of about 1.4 solar masses (M☉). Stars that collapse into neutron stars have a total mass of between 10 and 25 M☉ or possibly more for those that are especially rich in elements heavier than hydrogen and helium.
Once formed, neutron stars no longer actively generate heat and cool over time, but they may still evolve further through collisions or accretion. Most of the basic models for these objects imply that they are composed almost entirely of neutrons, as the extreme pressure causes the electrons and protons present in normal matter to combine into additional neutrons. These stars are partially supported against further collapse by neutron degeneracy pressure, just as white dwarfs are supported against collapse by electron degeneracy pressure. However, this is not by itself sufficient to hold up an object beyond 0.7 M☉ and repulsive nuclear forces increasingly contribute to supporting more massive neutron stars. If the remnant star has a mass exceeding the Tolman–Oppenheimer–Volkoff limit, approximately 2.2 to 2.9 M☉, the combination of degeneracy pressure and nuclear forces is insufficient to support the neutron star, causing it to collapse and form a black hole. The most massive neutron star detected so far, PSR J0952–0607, is estimated to be 2.35±0.17 M☉.