Neutrino in the context of Ice drilling


Neutrino in the context of Ice drilling

Neutrino Study page number 1 of 3

Play TriviaQuestions Online!

or

Skip to study material about Neutrino in the context of "Ice drilling"


⭐ Core Definition: Neutrino

A neutrino (/njˈtrn/ new-TREE-noh; denoted by the Greek letter ν) is an elementary particle that interacts via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass is so small (-ino) that it was long thought to be zero. The rest mass of the neutrino is much smaller than that of the other known elementary particles (excluding massless particles).The weak force has a very short range, the gravitational interaction is extremely weak due to the very small mass of the neutrino, and neutrinos do not participate in the electromagnetic interaction or the strong interaction.Consequently, neutrinos typically pass through normal matter unimpeded and with no detectable effect.

Weak interactions create neutrinos in one of three leptonic flavors:

↓ Menu
HINT:

In this Dossier

Neutrino in the context of Dark energy

In physical cosmology and astronomy, dark energy is a proposed form of energy that affects the universe on the largest scales. Its primary effect is to drive the accelerating expansion of the universe. It also slows the rate of structure formation. Assuming that the lambda-CDM model of cosmology is correct, dark energy dominates the universe, contributing 68% of the total energy in the present-day observable universe while dark matter and ordinary (baryonic) matter contribute 27% and 5%, respectively, and other components such as neutrinos and photons are nearly negligible. Dark energy's density is very low: 7×10 g/cm (6×10 J/m in mass-energy), much less than the density of ordinary matter or dark matter within galaxies. However, it dominates the universe's mass–energy content because it is uniform across space.

The first observational evidence for dark energy's existence came from measurements of supernovae. Type Ia supernovae have constant luminosity, which means that they can be used as accurate distance measures. Comparing this distance to the redshift (which measures the speed at which the supernova is receding) shows that the universe's expansion is accelerating. Prior to this observation, scientists thought that the gravitational attraction of matter and energy in the universe would cause the universe's expansion to slow over time. Since the discovery of accelerating expansion, several independent lines of evidence have been discovered that support the existence of dark energy.

View the full Wikipedia page for Dark energy
↑ Return to Menu

Neutrino in the context of Electron neutrino

The electron neutrino (ν
e
) is an elementary particle which has zero electric charge and a spin of 12. Together with the electron, it forms the first generation of leptons, hence the name electron neutrino. It was first hypothesized by Wolfgang Pauli in 1930, to account for missing momentum and missing energy in beta decay, and was discovered in 1956 by a team led by Clyde Cowan and Frederick Reines (see Cowan–Reines neutrino experiment).

View the full Wikipedia page for Electron neutrino
↑ Return to Menu

Neutrino in the context of Lepton

In particle physics, a lepton is an elementary particle of half-integer spin (spin 1/2) that does not undergo strong interactions. Two main classes of leptons exist: charged leptons (also known as the electron-like leptons or muons), including the electron, muon, and tauon, and neutral leptons, better known as neutrinos. Charged leptons can combine with other particles to form various composite particles such as atoms and positronium, while neutrinos rarely interact with anything, and are consequently rarely observed. The best known of all leptons is the electron.

There are six types of leptons, known as flavours, grouped in three generations. The first-generation leptons, also called electronic leptons, comprise the electron (e
) and the electron neutrino (ν
e
); the second are the muonic leptons, comprising the muon (μ
) and the muon neutrino (ν
μ
); and the third are the tauonic leptons, comprising the tau (τ
) and the tau neutrino (ν
τ
). Electrons have the least mass of all the charged leptons. The heavier muons and taus will rapidly change into electrons and neutrinos through a process of particle decay: the transformation from a higher mass state to a lower mass state. Thus electrons are stable and the most common charged lepton in the universe, whereas muons and taus can only be produced in high-energy collisions (such as those involving cosmic rays and those carried out in particle accelerators).

View the full Wikipedia page for Lepton
↑ Return to Menu

Neutrino in the context of Muon

A muon (/ˈm(j).ɒn/ M(Y)OO-on; from the Greek letter mu (μ) used to represent it) is an elementary particle similar to the electron, with an electric charge of −1 e and a spin of 1/2 ħ, but with a much greater mass. It is classified as a lepton. As with other leptons, the muon is not thought to be composed of any simpler particles.

The muon is an unstable subatomic particle with a mean lifetime of 2.2 μs, much longer than many other subatomic particles. As with the decay of the free neutron (with a lifetime around 15 minutes), muon decay is slow (by subatomic standards) because the decay is mediated only by the weak interaction (rather than the more powerful strong interaction or electromagnetic interaction), and because the mass difference between the muon and the set of its decay products is small, providing few kinetic degrees of freedom for decay. Muon decay almost always produces at least three particles, which must include an electron of the same charge as the muon and two types of neutrinos.

View the full Wikipedia page for Muon
↑ Return to Menu

Neutrino in the context of Meson

In particle physics, a meson (/ˈmzɒn, ˈmɛzɒn/) is a type of hadronic subatomic particle composed of an equal number of quarks and antiquarks, usually one of each, bound together by the strong interaction. Because mesons are composed of quark subparticles, they have a meaningful physical size, a diameter of roughly one femtometre (10 m), which is about 0.6 times the size of a proton or neutron. All mesons are unstable, with the longest-lived lasting for only a few tenths of a nanosecond. Heavier mesons decay to lighter mesons and ultimately to stable electrons, neutrinos and photons.

Outside the nucleus, mesons appear in nature only as short-lived products of very high-energy collisions between particles made of quarks, such as cosmic rays (high-energy protons and neutrons) and baryonic matter. Mesons are routinely produced artificially in cyclotrons or other particle accelerators in the collisions of protons, antiprotons, or other particles.

View the full Wikipedia page for Meson
↑ Return to Menu

Neutrino in the context of SN 1987A

SN 1987A was a Type II supernova in the Large Magellanic Cloud, a dwarf satellite galaxy of the Milky Way. It occurred approximately 51.4 kiloparsecs (168,000 light-years) from Earth and was the closest observed supernova since Kepler's Supernova in 1604. Light and neutrinos from the explosion reached Earth on February 23, 1987, and it was designated "SN 1987A" as the first supernova discovered that year. Its brightness peaked in May of that year, with an apparent magnitude of about 3, brighter than the constellation's brightest star, Alpha Doradus.

It was the first supernova that modern astronomers were able to study in great detail, and its observations have provided much insight into core-collapse supernovae. SN 1987A provided the first opportunity to confirm by direct observation the radioactive source of the energy for visible light emissions, by detecting predicted gamma-ray line radiation from two of its abundant radioactive nuclei. This proved the radioactive nature of the long-duration post-explosion glow of supernovae.

View the full Wikipedia page for SN 1987A
↑ Return to Menu

Neutrino in the context of Decoupling (cosmology)

In cosmology, decoupling is a period in the development of the universe when different types of particles fall out of thermal equilibrium with each other. This occurs as a result of the expansion of the universe, as their interaction rates decrease (and mean free paths increase) up to this critical point. The two verified instances of decoupling since the Big Bang which are most often discussed are photon decoupling and neutrino decoupling, as these led to the cosmic microwave background and cosmic neutrino background, respectively.

Photon decoupling is closely related to recombination, which occurred about 378,000 years after the Big Bang (at a redshift of z = 1100), when the universe was a hot opaque ("foggy") plasma. During recombination, free electrons became bound to protons (hydrogen nuclei) to form neutral hydrogen atoms. Because direct recombinations to the ground state (lowest energy) of hydrogen are very inefficient, these hydrogen atoms generally form with the electrons in a high energy state, and the electrons quickly transition to their low energy state by emitting photons. Because the neutral hydrogen that formed was transparent to light, those photons which were not captured by other hydrogen atoms were able, for the first time in the history of the universe, to travel long distances. They can still be detected today, although they now appear as radio waves, and form the cosmic microwave background ("CMB"). They reveal crucial clues about how the universe formed.

View the full Wikipedia page for Decoupling (cosmology)
↑ Return to Menu

Neutrino in the context of Radiance

In radiometry, radiance is the radiant flux emitted, reflected, transmitted or received by a given surface, per unit solid angle per unit projected area. Radiance is used to characterize diffuse emission and reflection of electromagnetic radiation, and to quantify emission of neutrinos and other particles. The SI unit of radiance is the watt per steradian per square metre (W·sr·m). It is a directional quantity: the radiance of a surface depends on the direction from which it is being observed.

The related quantity spectral radiance is the radiance of a surface per unit frequency or wavelength, depending on whether the spectrum is taken as a function of frequency or of wavelength.

View the full Wikipedia page for Radiance
↑ Return to Menu

Neutrino in the context of Tau (particle)

The tau (τ), also called the tau lepton, tau particle or tauon, is an elementary particle similar to the electron, with negative electric charge and a spin of 1/2. Like the electron, the muon, and the three neutrinos, the tau is a lepton, and like all elementary particles with half-integer spin, the tau has a corresponding antiparticle of opposite charge but equal mass and spin. In the tau's case, this is the "antitau" (also called the positive tau). Tau particles are denoted by the symbol τ and the antitaus by τ.

Tau leptons have a lifetime of 2.9×10 s and a mass of 1776.9 MeV/c (compared to 105.66 MeV/c for muons and 0.511 MeV/c for electrons). Because their interactions are very similar to those of the electron, a tau can be thought of as a much heavier version of the electron. Due to their greater mass, tau particles do not emit as much bremsstrahlung (braking radiation) as electrons; consequently they are potentially much more highly penetrating than electrons.

View the full Wikipedia page for Tau (particle)
↑ Return to Menu

Neutrino in the context of Cosmic neutrino background

The cosmic neutrino background is a proposed background particle radiation composed of neutrinos. They are sometimes known as relic neutrinos or sometimes abbreviated CNB or CνB, where the symbol ν is the Greek letter nu, standard particle physics symbol for a neutrino.

The CνB is a relic of the Big Bang; while the cosmic microwave background radiation (CMB) dates from when the universe was 379,000 years old, the CνB decoupled (separated) from matter when the universe was just one second old. It is estimated that today, the CνB has a temperature of roughly 1.95 K.

View the full Wikipedia page for Cosmic neutrino background
↑ Return to Menu

Neutrino in the context of Tau neutrino

The tau neutrino or tauon neutrino is an elementary particle which has the symbol ν
τ
and zero electric charge. Together with the tau (τ), it forms the third generation of leptons, hence the name tau neutrino. Its existence was immediately implied after the tau particle was detected in a series of experiments between 1974 and 1977 by Martin Lewis Perl with his colleagues at the SLACLBL group. The discovery of the tau neutrino was announced in July 2000 by the DONUT collaboration (Direct Observation of the Nu Tau). In 2024, the IceCube Neutrino Observatory published findings of seven astrophysical tau neutrino candidates.

As of 2022 they have been called the "least studied particle in the standard model" because of their low cross section, difficulty of production, and difficulty to distinguish from other neutrino flavors. One review argues they are worth studying more in order to finally completely measure their properties, test our knowledge of neutrino mixing, probe possible anomalies, and make full use of experiments that are sensitive to tau neutrinos in any case.

View the full Wikipedia page for Tau neutrino
↑ Return to Menu

Neutrino in the context of Neutrino oscillation

Neutrino oscillation is a quantum mechanical phenomenon in which a neutrino created with a specific lepton family number ("lepton flavor": electron, muon, or tau) can later be measured to have a different lepton family number. The probability of measuring a particular flavor for a neutrino varies between three known states as it propagates through space.

First predicted by Bruno Pontecorvo in 1957, neutrino oscillation has since been observed by a multitude of experiments in several different contexts. Most notably, the existence of neutrino oscillation resolved the long-standing solar neutrino problem.

View the full Wikipedia page for Neutrino oscillation
↑ Return to Menu

Neutrino in the context of Spin 1/2

In quantum mechanics, spin is an intrinsic property of all elementary particles. All known fermions, the particles that constitute ordinary matter, have a spin of 1/2. The spin number describes how many symmetrical facets a particle has in one full rotation; a spin of 1/2 means that the particle must be rotated by two full turns (through 720°) before it has the same configuration as when it started.

Particles with net spin 1/2 include the proton, neutron, electron, neutrino, and quarks. The dynamics of spin-1/2 objects cannot be accurately described using classical physics; they are among the simplest systems whose description requires quantum mechanics. As such, the study of the behavior of spin-1/2 systems forms a central part of quantum mechanics.

View the full Wikipedia page for Spin 1/2
↑ Return to Menu

Neutrino in the context of Wolfgang Pauli

Wolfgang Ernst Pauli (/ˈpɔːli/ PAW-lee; German: [ˈpaʊ̯li] ; 25 April 1900 – 15 December 1958) was an Austrian–Swiss theoretical physicist and a pioneer of quantum mechanics. In 1945, after having been nominated by Albert Einstein, Pauli received the Nobel Prize in Physics "for the discovery of the Exclusion Principle, also called the Pauli Principle". The discovery involved spin theory, which is the basis of a theory of the structure of matter.

To preserve the conservation of energy in beta decay, Pauli proposed the existence of a small neutral particle, dubbed the neutrino by Enrico Fermi, in 1930. Neutrinos were first detected in 1956.

View the full Wikipedia page for Wolfgang Pauli
↑ Return to Menu

Neutrino in the context of Beta decay

In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which an atomic nucleus emits a beta particle (fast energetic electron or positron), transforming into an isobar of that nuclide. For example, beta decay of a neutron transforms it into a proton by the emission of an electron accompanied by an antineutrino; or, conversely a proton is converted into a neutron by the emission of a positron with a neutrino in what is called positron emission. Neither the beta particle nor its associated (anti-)neutrino exist within the nucleus prior to beta decay, but are created in the decay process. By this process, unstable atoms obtain a more stable ratio of protons to neutrons. The probability of a nuclide decaying due to beta and other forms of decay is determined by its nuclear binding energy. The binding energies of all existing nuclides form what is called the nuclear band or valley of stability. For either electron or positron emission to be energetically possible, the energy release or Q value must be positive.

Beta decay is a consequence of the weak force, which is characterized by relatively long decay times. Nucleons are composed of up quarks and down quarks, and the weak force allows a quark to change its flavour by means of a virtual W boson leading to creation of an electron/antineutrino or positron/neutrino pair. For example, a neutron, composed of two down quarks and an up quark, decays to a proton composed of a down quark and two up quarks.

View the full Wikipedia page for Beta decay
↑ Return to Menu

Neutrino in the context of Clyde Cowan

Clyde Lorrain Cowan Jr (December 6, 1919 – May 24, 1974) was an American physicist and the co-discoverer of the neutrino along with Frederick Reines. The discovery was made in 1956 in the neutrino experiment. Reines received the Nobel Prize in Physics in 1995.

View the full Wikipedia page for Clyde Cowan
↑ Return to Menu