Neurodegenerative diseases in the context of "Cognitive disability"

Play Trivia Questions online!

or

Skip to study material about Neurodegenerative diseases in the context of "Cognitive disability"

Ad spacer

⭐ Core Definition: Neurodegenerative diseases

A neurodegenerative disease is caused by the progressive loss of neurons, in the process known as neurodegeneration. Neuronal damage may also ultimately result in their death. Neurodegenerative diseases include amyotrophic lateral sclerosis, multiple sclerosis, Parkinson's disease, Alzheimer's disease, Huntington's disease, multiple system atrophy, tauopathies, and prion diseases. Neurodegeneration can be found in the brain at many different levels of neuronal circuitry, ranging from molecular to systemic. Because there is no known way to reverse the progressive degeneration of neurons, these diseases are considered to be incurable; however research has shown that the two major contributing factors to neurodegeneration are oxidative stress and inflammation. Biomedical research has revealed many similarities between these diseases at the subcellular level, including atypical protein assemblies (like proteinopathy) and induced cell death. These similarities suggest that therapeutic advances against one neurodegenerative disease might ameliorate other diseases as well.

Within neurodegenerative diseases, it is estimated that 55 million people worldwide had dementia in 2019, and that by 2050 this figure will increase to 139 million people.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Neurodegenerative diseases in the context of Cognitive disability

There are a variety of disabilities affecting cognitive ability. This is a broad concept encompassing various intellectual or cognitive deficits, including intellectual disability (formerly called mental retardation), deficits too mild to properly qualify as intellectual disability, various specific conditions (such as specific learning disability), and problems acquired later in life through acquired brain injuries or neurodegenerative diseases like dementia.

Many of these disabilities have an effect on memory, which is the ability to recall what has been learned over time. Typically memory is moved from sensory memory to working memory, and then finally into long-term memory. People with cognitive disabilities typically will have trouble with one of these types of memory.

↓ Explore More Topics
In this Dossier

Neurodegenerative diseases in the context of Impulsivity

In psychology, impulsivity (or impulsiveness) is a tendency to act on a whim, displaying behavior characterized by little or no forethought, reflection, or consideration of the consequences. Impulsive actions are typically "poorly conceived, prematurely expressed, unduly risky, or inappropriate to the situation that often result in undesirable consequences," which imperil long-term goals and strategies for success. Impulsivity can be classified as a multifactorial construct. A functional variety of impulsivity has also been suggested, which involves action without much forethought in appropriate situations that can and does result in desirable consequences. "When such actions have positive outcomes, they tend not to be seen as signs of impulsivity, but as indicators of boldness, quickness, spontaneity, courageousness, or unconventionality." Thus, the construct of impulsivity includes at least two independent components: first, acting without an appropriate amount of deliberation, which may or may not be functional; and second, choosing short-term gains over long-term ones.

Impulsivity is both a facet of personality and a major component of various disorders, including FASD, autism, ADHD, substance use disorders, bipolar disorder, antisocial personality disorder, and borderline personality disorder. Abnormal patterns of impulsivity have also been noted in instances of acquired brain injury and neurodegenerative diseases. Neurobiological findings suggest that there are specific brain regions involved in impulsive behavior, although different brain networks may contribute to different manifestations of impulsivity, and that genetics may play a role.

↑ Return to Menu

Neurodegenerative diseases in the context of Stem-cell therapy

Stem-cell therapy uses stem cells to treat or prevent a disease or condition. As of 2024, the only FDA-approved therapy using stem cells is hematopoietic stem cell transplantation. This usually takes the form of a bone marrow or peripheral blood stem cell transplantation, but the cells can also be derived from umbilical cord blood. Research is underway to develop various sources for stem cells as well as to apply stem-cell treatments for neurodegenerative diseases and conditions such as diabetes and heart disease.

Stem-cell therapy has become controversial following developments such as the ability of scientists to isolate and culture embryonic stem cells, to create stem cells using somatic cell nuclear transfer, and their use of techniques to create induced pluripotent stem cells. This controversy is often related to abortion politics and human cloning. Additionally, efforts to market treatments based on transplant of stored umbilical cord blood have been controversial.

↑ Return to Menu

Neurodegenerative diseases in the context of Glutamate receptor

Glutamate receptors are synaptic and non synaptic receptors located primarily on the membranes of neuronal and glial cells. Glutamate (the conjugate base of glutamic acid) is abundant in the human body, but particularly in the nervous system and especially prominent in the human brain where it is the body's most prominent neurotransmitter, the brain's main excitatory neurotransmitter, and also the precursor for GABA, the brain's main inhibitory neurotransmitter. Glutamate receptors are responsible for the glutamate-mediated postsynaptic excitation of neural cells, and are important for neural communication, memory formation, learning, and regulation.

Glutamate receptors are implicated in a number of neurological conditions. Their central role in excitotoxicity and prevalence in the central nervous system has been linked or speculated to be linked to many neurodegenerative diseases, and several other conditions have been further linked to glutamate receptor gene mutations or receptor autoantigen/antibody activity.

↑ Return to Menu