Network interface controller in the context of Computer bus


Network interface controller in the context of Computer bus

Network interface controller Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Network interface controller in the context of "Computer bus"


⭐ Core Definition: Network interface controller

A network interface controller (NIC, also known as a network interface card, network adapter, LAN adapter and physical network interface) is a computer hardware component that connects a computer to a computer network.

Early network interface controllers were commonly implemented on expansion cards that plugged into a computer bus. The low cost and ubiquity of the Ethernet standard means that most newer computers have a network interface built into the motherboard, or is contained into a USB-connected dongle, although network cards remain available.

↓ Menu
HINT:

In this Dossier

Network interface controller in the context of Intel

Intel Corporation is an American multinational technology company headquartered in Santa Clara, California. It designs, manufactures, and sells computer components such as central processing units (CPUs) and related products for business and consumer markets. Intel was the world's third-largest semiconductor chip manufacturer by revenue in 2024 and has been included in the Fortune 500 list of the largest United States corporations by revenue since 2007. It was one of the first companies listed on Nasdaq. Since 2025, the United States government has held a 9.9% non-voting equity stake in the company.

Intel supplies microprocessors for most manufacturers of computer systems, and is one of the developers of the x86 series of instruction sets found in most personal computers (PCs). It also manufactures chipsets, network interface controllers, flash memory, graphics processing units (GPUs), and other devices related to communications and computing. Intel has a strong presence in the high-performance general-purpose and gaming PC market with its Intel Core line of CPUs, whose high-end models are among the fastest consumer CPUs, as well as its Intel Arc series of GPUs.

View the full Wikipedia page for Intel
↑ Return to Menu

Network interface controller in the context of Network address

A network address is an identifier for a node or host on a telecommunications network. Network addresses are designed to be unique identifiers across the network, although some networks allow for local, private addresses, or locally administered addresses that may not be unique. Special network addresses are allocated as broadcast or multicast addresses. These too are not unique.

In some cases, network hosts may have more than one network address. For example, each network interface controller may be uniquely identified. Further, because protocols are frequently layered, more than one protocol's network address can occur in any particular network interface or node and more than one type of network address may be used in any one network.

View the full Wikipedia page for Network address
↑ Return to Menu

Network interface controller in the context of Routed

Routing is the process of selecting a path for traffic in a network or between or across multiple networks. Broadly, routing is performed in many types of networks, including circuit-switched networks, such as the public switched telephone network (PSTN), and computer networks, such as the Internet.

In packet switching networks, routing is the higher-level decision-making that directs network packets from their source toward their destination through intermediate network nodes by specific packet forwarding mechanisms. Packet forwarding is the transit of network packets from one network interface to another. Intermediate nodes are typically network hardware devices such as routers, gateways, firewalls, or switches. General-purpose computers also forward packets and perform routing, although they have no specially optimized hardware for the task.

View the full Wikipedia page for Routed
↑ Return to Menu

Network interface controller in the context of Grid computing

Grid computing is the use of widely distributed computer resources to reach a common goal. A computing grid can be thought of as a distributed system with non-interactive workloads that involve many files. Grid computing is distinguished from conventional high-performance computing systems such as cluster computing in that grid computers have each node set to perform a different task/application. Grid computers also tend to be more heterogeneous and geographically dispersed (thus not physically coupled) than cluster computers. Although a single grid can be dedicated to a particular application, commonly a grid is used for a variety of purposes. Grids are often constructed with general-purpose grid middleware software libraries. Grid sizes can be quite large.

Grids are a form of distributed computing composed of many networked loosely coupled computers acting together to perform large tasks. For certain applications, distributed or grid computing can be seen as a special type of parallel computing that relies on complete computers (with onboard CPUs, storage, power supplies, network interfaces, etc.) connected to a computer network (private or public) by a conventional network interface, such as Ethernet. This is in contrast to the traditional notion of a supercomputer, which has many processors connected by a local high-speed computer bus. This technology has been applied to computationally intensive scientific, mathematical, and academic problems through volunteer computing, and it is used in commercial enterprises for such diverse applications as drug discovery, economic forecasting, seismic analysis, and back office data processing in support for e-commerce and Web services.

View the full Wikipedia page for Grid computing
↑ Return to Menu

Network interface controller in the context of Locally administered address

A MAC address (medium access control address or media access control address) is a unique identifier assigned to a network interface controller (NIC) for use as a network address in communications within a network segment. This use is common in most IEEE 802 networking technologies, including Ethernet, Wi-Fi, and Bluetooth. Within the Open Systems Interconnection (OSI) network model, MAC addresses are used in the medium access control protocol sublayer of the data link layer. As typically represented, MAC addresses are recognizable as six groups of two hexadecimal digits, separated by hyphens, colons, or without a separator.

MAC addresses are primarily assigned by device manufacturers, and are therefore often referred to as the burned-in address, or as an Ethernet hardware address, hardware address, or physical address. Each address can be stored in the interface hardware, such as its read-only memory, or by a firmware mechanism. Many network interfaces, however, support changing their MAC addresses. The address typically includes a manufacturer's organizationally unique identifier (OUI). MAC addresses are formed according to the principles of two numbering spaces based on extended unique identifiers (EUIs) managed by the Institute of Electrical and Electronics Engineers (IEEE): EUI-48—which replaces the obsolete term MAC-48—and EUI-64.

View the full Wikipedia page for Locally administered address
↑ Return to Menu