NeXTcube in the context of DRAM


NeXTcube in the context of DRAM

NeXTcube Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about NeXTcube in the context of "DRAM"


⭐ Core Definition: NeXTcube

The NeXTcube is a high-end workstation computer developed, manufactured, and sold by NeXT from 1990 to 1993. It superseded the original NeXT Computer workstation and is housed in a similar cube-shaped magnesium enclosure, designed by frog design. The workstation runs the NeXTSTEP operating system and was launched with a $7,995 (equivalent to about $19,000 in 2024) list price.

↓ Menu
HINT:

👉 NeXTcube in the context of DRAM

Dynamic random-access memory (dynamic RAM or DRAM) is a type of random-access semiconductor memory that stores each bit of data in a memory cell, usually consisting of a tiny capacitor and a transistor, both typically based on metal–oxide–semiconductor (MOS) technology.

While most DRAM memory cell designs use a capacitor and transistor, some only use two transistors. In the designs where a capacitor is used, the capacitor can either be charged or discharged; these two states are taken to represent the two values of a bit, conventionally called 0 and 1. The electric charge on the capacitors gradually leaks away; without intervention, the data on the capacitor would soon be lost. To prevent this, DRAM requires an external memory refresh circuit which periodically rewrites the data in the capacitors, restoring them to their original charge. This refresh process is the defining characteristic of dynamic random-access memory, in contrast to static random-access memory (SRAM) which does not require data to be refreshed. Unlike flash memory, DRAM is volatile memory (as opposed to non-volatile memory), since it loses its data quickly when power is removed. However, DRAM does exhibit limited data remanence.

↓ Explore More Topics
In this Dossier

NeXTcube in the context of Workstation

A workstation is a special computer designed for technical or scientific applications. Intended primarily to be used by a single user, they are commonly connected to a local area network and run multi-user operating systems. The term workstation has been used loosely to refer to everything from a mainframe computer terminal to a PC connected to a network, but the most common form refers to the class of hardware offered by several current and defunct companies such as Sun Microsystems, Silicon Graphics, Apollo Computer, DEC, HP, NeXT, and IBM which powered the 3D computer graphics revolution of the late 1990s.

Workstations formerly offered higher performance specifications than mainstream personal computers, especially in terms of processing, graphics, memory, and multitasking. Workstations are optimized for the visualization and manipulation of different types of complex data such as 3D mechanical design, engineering simulations like computational fluid dynamics, animation, video editing, image editing, medical imaging, image rendering, computational science, generating mathematical plots, and software development. Typically, the form factor is that of a desktop computer, which consists of a high-resolution display, a keyboard, and a mouse at a minimum, but also offers multiple displays, graphics tablets, and 3D mice for manipulating objects and navigating scenes. Workstations were the first segment of the computer market to present advanced accessories, and collaboration tools like videoconferencing.

View the full Wikipedia page for Workstation
↑ Return to Menu

NeXTcube in the context of Digital signal processor

A digital signal processor (DSP) is a specialized microprocessor chip, with its architecture optimized for the operational needs of digital signal processing. DSPs are fabricated on metal–oxide–semiconductor (MOS) integrated circuit chips. They are widely used in audio signal processing, telecommunications, digital image processing, radar, sonar and speech recognition systems, and in common consumer electronic devices such as mobile phones, disk drives and high-definition television (HDTV) products.

The goal of a DSP is usually to measure, filter or compress continuous real-world analog signals. Most general-purpose microprocessors can also execute digital signal processing algorithms successfully, but may not be able to keep up with such processing continuously in real-time. Also, dedicated DSPs usually have better power efficiency, thus they are more suitable in portable devices such as mobile phones because of power consumption constraints. DSPs often use special memory architectures that are able to fetch multiple data or instructions at the same time.

View the full Wikipedia page for Digital signal processor
↑ Return to Menu

NeXTcube in the context of NeXT

NeXT, Inc. (later NeXT Computer, Inc. and NeXT Software, Inc.) was an American technology company headquartered in Redwood City, California, which specialized in computer workstations for higher education and business markets, and later developed the first dynamic web page software. It was founded in 1985 by Steve Jobs, the Apple Computer co-founder who had been removed from Apple that year. NeXT debuted with the NeXT Computer in 1988, and released the NeXTcube and smaller NeXTstation in 1990. The series had relatively limited sales, with only about 50,000 total units shipped. Nevertheless, the object-oriented programming and graphical user interface were highly influential trendsetters of computer innovation.

NeXT partnered with Sun Microsystems to create a programming environment called OpenStep, which decoupled the NeXTSTEP operating system's application layer to host it on third-party operating systems. In 1993, NeXT withdrew from the hardware industry to concentrate on marketing OPENSTEP for Mach, its own OpenStep implementation for several other computer vendors. NeXT developed WebObjects, one of the first enterprise web frameworks, and although its market appeal was limited by its high price of US$50,000 (equivalent to $103,000 in 2024), it is a prominent early example of dynamic web pages rather than static content.

View the full Wikipedia page for NeXT
↑ Return to Menu

NeXTcube in the context of Motorola 68000 series

The Motorola 68000 series (also known as 680x0, m68000, m68k, or 68k) is a family of 32-bit complex instruction set computer (CISC) microprocessors. During the 1980s and early 1990s, they were popular in personal computers and workstations and were the primary competitors of Intel's x86 microprocessors. They were best known as the processors used in the early Apple Macintosh, the Sharp X68000, the Commodore Amiga, the Sinclair QL, the Atari ST and Falcon, the Atari Jaguar, the Sega Genesis (Mega Drive) and Sega CD, the Philips CD-i, the Capcom System I (Arcade), the AT&T UNIX PC, the Tandy Model 16/16B/6000, the Sun Microsystems Sun-1, Sun-2 and Sun-3, the NeXT Computer, NeXTcube, NeXTstation, and NeXTcube Turbo, early Silicon Graphics IRIS workstations, the Aesthedes, computers from MASSCOMP, the Texas Instruments TI-89/TI-92 calculators, the Palm Pilot (all models running Palm OS 4.x or earlier), the Control Data Corporation CDCNET Device Interface, the VTech Precomputer Unlimited and the Space Shuttle. Although no modern desktop computers are based on processors in the 680x0 series, derivative processors are still widely used in embedded systems.

Motorola ceased development of the 680x0 series architecture in 1994, replacing it with the PowerPC RISC architecture, which was developed in conjunction with IBM and Apple Computer as part of the AIM alliance.

View the full Wikipedia page for Motorola 68000 series
↑ Return to Menu

NeXTcube in the context of Dynamic RAM

Dynamic random-access memory (dynamic RAM or DRAM) is a type of random-access semiconductor memory that stores each bit of data in a memory cell.

While most DRAM memory cell designs use a capacitor and transistor, some only use two transistors. In the designs where a capacitor is used, the capacitor can either be charged or discharged; these two states are taken to represent the two values of a bit, conventionally called 0 and 1. The electric charge on the capacitors gradually leaks away; without intervention, the data on the capacitor would soon be lost. To prevent this, DRAM requires an external memory refresh circuit which periodically rewrites the data in the capacitors, restoring them to their original charge. This refresh process is the defining characteristic of dynamic random-access memory, in contrast to static random-access memory (SRAM) which does not require data to be refreshed. Unlike flash memory, DRAM is volatile memory (as opposed to non-volatile memory), since it loses its data quickly when power is removed. However, DRAM does exhibit limited data remanence.

View the full Wikipedia page for Dynamic RAM
↑ Return to Menu

NeXTcube in the context of Dynamic random-access memory

Dynamic random-access memory (dynamic RAM or DRAM) is a type of random-access semiconductor memory that stores each bit of data in a memory cell. A DRAM memory cell usually consists of a tiny capacitor and a transistor, both typically based on metal–oxide–semiconductor (MOS) technology.

While most DRAM memory cell designs use a capacitor and transistor, some only use two transistors. In the designs where a capacitor is used, the capacitor can either be charged or discharged; these two states are taken to represent the two values of a bit, conventionally called 0 and 1. The electric charge on the capacitors gradually leaks away; without intervention, the data on the capacitor would soon be lost. To prevent this, DRAM requires an external memory refresh circuit which periodically rewrites the data in the capacitors, restoring them to their original charge. This refresh process is the defining characteristic of dynamic random-access memory, in contrast to static random-access memory (SRAM) which does not require data to be refreshed. Unlike flash memory, DRAM is volatile memory (as opposed to non-volatile memory), since it loses its data quickly when power is removed. However, DRAM does exhibit limited data remanence.

View the full Wikipedia page for Dynamic random-access memory
↑ Return to Menu