Navier–Stokes equations in the context of "Sir George Stokes, 1st Baronet"

Play Trivia Questions online!

or

Skip to study material about Navier–Stokes equations in the context of "Sir George Stokes, 1st Baronet"

Ad spacer

⭐ Core Definition: Navier–Stokes equations

The Navier–Stokes equations (/nævˈj ˈstks/ nav-YAY STOHKS) are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician Sir George Gabriel Stokes, Bt. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).

The Navier–Stokes equations mathematically express momentum balance for Newtonian fluids and make use of conservation of mass. They are sometimes accompanied by an equation of state relating pressure, temperature and density. They arise from applying Isaac Newton's second law to fluid motion, together with the assumption that the stress in the fluid is the sum of a diffusing viscous term (proportional to the gradient of velocity) and a pressure term—hence describing viscous flow. The difference between them and the closely related Euler equations is that Navier–Stokes equations take viscosity into account while the Euler equations model only inviscid flow. As a result, the Navier–Stokes are an elliptic equation and therefore have better analytic properties, at the expense of having less mathematical structure (e.g. they are never completely integrable).

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Navier–Stokes equations in the context of Synoptic scale meteorology

In meteorology, the synoptic scale (also called the large scale or cyclonic scale) is a horizontal length scale of the order of 1,000 km (620 mi) or more. This corresponds to a horizontal scale typical of mid-latitude depressions (e.g. extratropical cyclones). Most high- and low-pressure areas seen on weather maps (such as surface weather analyses) are synoptic-scale systems, driven by the location of Rossby waves in their respective hemisphere. Low-pressure areas and their related frontal zones occur on the leading edge of a trough within the Rossby wave pattern, while high-pressure areas form on the back edge of the trough. Most precipitation areas occur near frontal zones. The word synoptic is derived from the Ancient Greek word συνοπτικός (sunoptikós), meaning "seen together".

The Navier–Stokes equations applied to atmospheric motion can be simplified by scale analysis in the synoptic scale. It can be shown that the main terms in horizontal equations are Coriolis force and pressure gradient terms; therefore, one can use geostrophic approximation. In vertical coordinates, the momentum equation simplifies to the hydrostatic equilibrium equation.

↑ Return to Menu

Navier–Stokes equations in the context of Partial differential equation

In mathematics, a partial differential equation (PDE) is an equation which involves a multivariable function and one or more of its partial derivatives.

The function is often thought of as an "unknown" that solves the equation, similar to how x is thought of as an unknown number solving, e.g., an algebraic equation like x − 3x + 2 = 0. However, it is usually impossible to write down explicit formulae for solutions of partial differential equations. There is correspondingly a vast amount of modern mathematical and scientific research on methods to numerically approximate solutions of certain partial differential equations using computers. Partial differential equations also occupy a large sector of pure mathematical research, in which the usual questions are, broadly speaking, on the identification of general qualitative features of solutions of various partial differential equations, such as existence, uniqueness, regularity and stability. Among the many open questions are the existence and smoothness of solutions to the Navier–Stokes equations, named as one of the Millennium Prize Problems in 2000.

↑ Return to Menu

Navier–Stokes equations in the context of Stokes' law

In fluid dynamics, Stokes' law gives the frictional force – also called drag force – exerted on spherical objects moving at very small Reynolds numbers in a viscous fluid. It was derived by George Gabriel Stokes in 1851 by solving the Stokes flow limit for small Reynolds numbers of the Navier–Stokes equations.

↑ Return to Menu

Navier–Stokes equations in the context of Del

Del, or nabla, is an operator used in mathematics (particularly in vector calculus) as a vector differential operator, usually represented by (the nabla symbol). When applied to a function defined on a one-dimensional domain, it denotes the standard derivative of the function as defined in calculus. When applied to a field (a function defined on a multi-dimensional domain), it may denote any one of three operations depending on the way it is applied: the gradient or (locally) steepest slope of a scalar field (or sometimes of a vector field, as in the Navier–Stokes equations); the divergence of a vector field; or the curl (rotation) of a vector field.

Del is a very convenient mathematical notation for those three operations (gradient, divergence, and curl) that makes many equations easier to write and remember. The del symbol (or nabla) can be formally defined as a vector operator whose components are the corresponding partial derivative operators. As a vector operator, it can act on scalar and vector fields in three different ways, giving rise to three different differential operations: first, it can act on scalar fields by a formal scalar multiplication—to give a vector field called the gradient; second, it can act on vector fields by a formal dot product—to give a scalar field called the divergence; and lastly, it can act on vector fields by a formal cross product—to give a vector field called the curl. These formal products do not necessarily commute with other operators or products. These three uses are summarized as:

↑ Return to Menu

Navier–Stokes equations in the context of Free molecular flow

Free molecular flow describes the fluid dynamics of gas where the mean free path of the molecules is larger than the size of the chamber or of the object under test. For tubes/objects of the size of several cm, this means pressures well below 10 mbar. This is also called the regime of high vacuum, or even ultra-high vacuum. This is opposed to viscous flow encountered at higher pressures. The presence of free molecular flow can be calculated, at least in estimation, with the Knudsen number (Kn). If Kn > 10, the system is in free molecular flow, also known as Knudsen flow. Knudsen flow has been defined as the transitional range between viscous flow and molecular flow, which is significant in the medium vacuum range where λ ≈ d.

Gas flow can be grouped in four regimes: For Kn≤0.001, flow is continuous, and the Navier–Stokes equations are applicable, from 0.001<Kn<0.1, slip flow occurs, from 0.1≤Kn<10, transitional flow occurs and for Kn≥10, free molecular flow occurs.

↑ Return to Menu