Nabla symbol in the context of "Del"

Play Trivia Questions online!

or

Skip to study material about Nabla symbol in the context of "Del"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<

👉 Nabla symbol in the context of Del

Del, or nabla, is an operator used in mathematics (particularly in vector calculus) as a vector differential operator, usually represented by ∇ (the nabla symbol). When applied to a function defined on a one-dimensional domain, it denotes the standard derivative of the function as defined in calculus. When applied to a field (a function defined on a multi-dimensional domain), it may denote any one of three operations depending on the way it is applied: the gradient or (locally) steepest slope of a scalar field (or sometimes of a vector field, as in the Navier–Stokes equations); the divergence of a vector field; or the curl (rotation) of a vector field.

Del is a very convenient mathematical notation for those three operations (gradient, divergence, and curl) that makes many equations easier to write and remember. The del symbol (or nabla) can be formally defined as a vector operator whose components are the corresponding partial derivative operators. As a vector operator, it can act on scalar and vector fields in three different ways, giving rise to three different differential operations: first, it can act on scalar fields by a formal scalar multiplication—to give a vector field called the gradient; second, it can act on vector fields by a formal dot product—to give a scalar field called the divergence; and lastly, it can act on vector fields by a formal cross product—to give a vector field called the curl. These formal products do not necessarily commute with other operators or products. These three uses are summarized as:

↓ Explore More Topics
In this Dossier

Nabla symbol in the context of Newton's notation

In differential calculus, there is no single standard notation for differentiation. Instead, several notations for the derivative of a function or a dependent variable have been proposed by various mathematicians, including Leibniz, Newton, Lagrange, and Arbogast. The usefulness of each notation depends on the context in which it is used, and it is sometimes advantageous to use more than one notation in a given context. For more specialized settings—such as partial derivatives in multivariable calculus, tensor analysis, or vector calculus—other notations, such as subscript notation or the ∇ operator are common. The most common notations for differentiation (and its opposite operation, antidifferentiation or indefinite integration) are listed below.

↑ Return to Menu