Natural selection in the context of Dog breeding


Natural selection in the context of Dog breeding

Natural selection Study page number 1 of 13

Play TriviaQuestions Online!

or

Skip to study material about Natural selection in the context of "Dog breeding"


⭐ Core Definition: Natural selection

Natural selection is the differential survival and reproduction of individuals due to differences in the relative fitness endowed on them by their own particular complement of observable characteristics. It is a key law or mechanism of evolution which changes the heritable traits characteristic of a population or species over generations. Charles Darwin popularised the term "natural selection", contrasting it with artificial selection, which is intentional, whereas natural selection is not.

For Darwin natural selection was a law or principle which resulted from three different kinds of process: inheritance, including the transmission of heritable material from parent to offspring and its development (ontogeny) in the offspring; variation, which partly resulted from an organism's own agency (see phenotype; Baldwin effect); and the struggle for existence, which included both competition between organisms and cooperation or 'mutual aid' (particularly in 'social' plants and social animals).

↓ Menu
HINT:

In this Dossier

Natural selection in the context of Biology

Biology is the scientific study of life and living organisms. It is a broad natural science that encompasses a wide range of fields and unifying principles that explain the structure, function, growth, origin, evolution, and distribution of life. Central to biology are five fundamental themes: the cell as the basic unit of life, genes and heredity as the basis of inheritance, evolution as the driver of biological diversity, energy transformation for sustaining life processes, and the maintenance of internal stability (homeostasis).

Biology examines life across multiple levels of organization, from molecules and cells to organisms, populations, and ecosystems. Subdisciplines include molecular biology, physiology, ecology, evolutionary biology, developmental biology, and systematics, among others. Each of these fields applies a range of methods to investigate biological phenomena, including observation, experimentation, and mathematical modeling. Modern biology is grounded in the theory of evolution by natural selection, first articulated by Charles Darwin, and in the molecular understanding of genes encoded in DNA. The discovery of the structure of DNA and advances in molecular genetics have transformed many areas of biology, leading to applications in medicine, agriculture, biotechnology, and environmental science.

View the full Wikipedia page for Biology
↑ Return to Menu

Natural selection in the context of Island

An island or isle is a piece of land, distinct from a continent, completely surrounded by water. There are continental islands, which were formed by being split from a continent by plate tectonics, and oceanic islands, which have never been part of a continent. Oceanic islands can be formed from volcanic activity, grow into atolls from coral reefs, and form from sediment along shorelines, creating barrier islands. River islands can also form from sediment and debris in rivers. Artificial islands are those made by humans, including small rocky outcroppings built out of lagoons and large-scale land reclamation projects used for development.

Islands are host to diverse plant and animal life. Oceanic islands have the sea as a natural barrier to the introduction of new species, causing the species that do reach the island to evolve in isolation. Continental islands share animal and plant life with the continent they split from. Depending on how long ago the continental island formed, the life on that island may have diverged greatly from the mainland due to natural selection.

View the full Wikipedia page for Island
↑ Return to Menu

Natural selection in the context of Sociality

Sociality is the degree to which individuals in an animal population tend to associate in social groups (for which, the desire or inclination is known as gregariousness) and form cooperative societies.

Sociality is a survival response to evolutionary pressures. For example, when a mother wasp stays near her larvae in the nest, parasites are less likely to eat the larvae. Biologists suspect that pressures from parasites and other predators selected this behavior in wasps of the family Vespidae.

View the full Wikipedia page for Sociality
↑ Return to Menu

Natural selection in the context of Evolution

Evolution is the change in the heritable characteristics of biological populations over successive generations. It occurs when evolutionary processes such as genetic drift and natural selection act on genetic variation, resulting in certain characteristics becoming more or less common within a population over successive generations. The process of evolution has given rise to biodiversity at every level of biological organisation.

The scientific theory of evolution by natural selection was conceived independently by two British naturalists, Charles Darwin and Alfred Russel Wallace, in the mid-19th century as an explanation for why organisms are adapted to their physical and biological environments. The theory was first set out in detail in Darwin's book On the Origin of Species. Evolution by natural selection is established by observable facts about living organisms: (1) more offspring are often produced than can possibly survive; (2) traits vary among individuals with respect to their morphology, physiology, and behaviour; (3) different traits confer different rates of survival and reproduction (differential fitness); and (4) traits can be passed from generation to generation (heritability of fitness). In successive generations, members of a population are therefore more likely to be replaced by the offspring of parents with favourable characteristics for that environment.

View the full Wikipedia page for Evolution
↑ Return to Menu

Natural selection in the context of Heredity

Heredity, also called inheritance or biological inheritance, is the passing on of traits from parents to their offspring; either through asexual reproduction or sexual reproduction, the offspring cells or organisms acquire the genetic information of their parents. Through heredity, variations between individuals can accumulate and cause species to evolve by natural selection. The study of heredity in biology is genetics.

View the full Wikipedia page for Heredity
↑ Return to Menu

Natural selection in the context of Evolutionary biology

Evolutionary biology is a subfield of biology that analyzes the four mechanisms of evolution: natural selection, mutation, genetic drift, and gene flow. The purpose of evolutionary biology is to observe the diversity of life on Earth. The idea of natural selection was first researched by Charles Darwin as he studied bird beaks. The discipline of evolutionary biology emerged through what Julian Huxley called the modern synthesis of understanding, from previously unrelated fields of biological research, such as genetics and ecology, systematics, and paleontology. Huxley was able to take what Charles Darwin discovered and elaborate to build on his understandings.

The investigational range of current research has widened to encompass the genetic architecture of adaptation, molecular evolution, and the different forces that contribute to evolution, such as sexual selection, genetic drift, and biogeography. The newer field of evolutionary developmental biology ("evo-devo") investigates how embryogenesis is controlled, thus yielding a wider synthesis that integrates developmental biology with the fields of study covered by the earlier evolutionary synthesis.

View the full Wikipedia page for Evolutionary biology
↑ Return to Menu

Natural selection in the context of Charles Darwin

Charles Robert Darwin (/ˈdɑːrwɪn/ DAR-win; 12 February 1809 – 19 April 1882) was an English naturalist, geologist, and biologist, widely known for his contributions to evolutionary biology. His proposition that all species of life have descended from a common ancestor is now generally accepted and considered a fundamental scientific concept. In a joint presentation with Alfred Russel Wallace, he introduced his scientific theory that this branching pattern of evolution resulted from a process he called natural selection, in which the struggle for existence has a similar effect to the artificial selection involved in selective breeding. Darwin has been described as one of the most influential figures in human history and was honoured by burial in Westminster Abbey.

Darwin's early interest in nature led him to neglect his medical education at the University of Edinburgh; instead, he helped Grant to investigate marine invertebrates. His studies at the University of Cambridge's Christ's College from 1828 to 1831 encouraged his passion for natural science. However, it was his five-year voyage on HMS Beagle from 1831 to 1836 that truly established Darwin as an eminent geologist. The observations and theories he developed during his voyage supported Charles Lyell's concept of gradual geological change. Publication of his journal of the voyage made Darwin famous as a popular author. His first scientific work was The Structure and Distribution of Coral Reefs (1842). Along with his work on barnacles, it won him the Royal Medal in 1853.

View the full Wikipedia page for Charles Darwin
↑ Return to Menu

Natural selection in the context of Evolutionarily stable strategy

An evolutionarily stable strategy (ESS) is a strategy (or set of strategies) that is impermeable when adopted by a population in adaptation to a specific environment, that is to say it cannot be displaced by an alternative strategy (or set of strategies) which may be novel or initially rare. Introduced by John Maynard Smith and George R. Price in 1972/3, it is an important concept in behavioural ecology, evolutionary psychology, mathematical game theory and economics, with applications in other fields such as anthropology, philosophy and political science.

In game-theoretical terms, an ESS is an equilibrium refinement of the Nash equilibrium, being a Nash equilibrium that is also "evolutionarily stable." Thus, once fixed in a population, natural selection alone is sufficient to prevent alternative (mutant) strategies from replacing it (although this does not preclude the possibility that a better strategy, or set of strategies, will emerge in response to selective pressures resulting from environmental change).

View the full Wikipedia page for Evolutionarily stable strategy
↑ Return to Menu

Natural selection in the context of Early European modern humans

Cro-Magnons or European early modern humans (EEMH) were the first early modern humans (Homo sapiens) to settle in Europe and North Africa, migrating from Western Asia, continuously occupying the continent possibly from as early as 56,800 years ago. They interacted and interbred with the indigenous Neanderthals (H. neanderthalensis) of Europe and Western Asia, who went extinct 35,000 to 40,000 years ago. The first wave of modern humans in Europe (Initial Upper Paleolithic) left no genetic legacy to modern Europeans; however, from 37,000 years ago a second wave succeeded in forming a single founder population, from which all subsequent Cro-Magnons descended and which contributes ancestry to a majority of present-day Europeans, West Asians as well as some North Africans. Cro-Magnons produced Upper Palaeolithic cultures, the first major one being the Aurignacian, which was succeeded by the Gravettian by 30,000 years ago. The Gravettian split into the Epi-Gravettian in the east and Solutrean in the west, due to major climatic degradation during the Last Glacial Maximum (LGM), peaking 21,000 years ago. As Europe warmed, the Solutrean evolved into the Magdalenian by 20,000 years ago, and these peoples recolonised Europe. The Magdalenian and Epi-Gravettian gave way to Mesolithic cultures as big game animals were dying out, and the Last Glacial Period drew to a close.

Cro-Magnons were generally more robust than most living populations, having larger brains, broader faces, more prominent brow ridges, and bigger teeth. The earliest Cro-Magnon specimens also exhibit some features that are reminiscent of those found in Neanderthals. The first Cro-Magnons would have generally had darker skin tones than most modern Europeans and some West Asians and North Africans; natural selection for lighter skin would not have begun until 30,000 years ago. Before the LGM, Cro-Magnons had overall low population density, tall stature similar to post-industrial humans, and expansive trade routes stretching as long as 900 km (560 mi), and hunted big game animals. Cro-Magnons had much higher populations than the Neanderthals, possibly due to higher fertility rates; life expectancy for both species was typically under 40 years. Following the LGM, population density increased as communities travelled less frequently (though for longer distances), and the need to feed so many more people in tandem with the increasing scarcity of big game caused them to rely more heavily on small or aquatic game (broad spectrum revolution), and to more frequently participate in game drive systems and slaughter whole herds at a time. The Cro-Magnon arsenal included spears, spear-throwers, harpoons, and possibly throwing sticks and Palaeolithic dogs. Cro-Magnons likely commonly constructed temporary huts while moving around, and Gravettian peoples notably made large huts on the East European Plain out of mammoth bones.

View the full Wikipedia page for Early European modern humans
↑ Return to Menu

Natural selection in the context of Alfred Russel Wallace

Alfred Russel Wallace (8 January 1823 – 7 November 1913) was an English naturalist, explorer, geographer, anthropologist, biologist and illustrator. He independently conceived the theory of evolution through natural selection; his 1858 paper on the subject was published that year alongside extracts from Charles Darwin's writings on the topic. It spurred Darwin to set aside the "big species book" he was drafting and to quickly write an abstract of it, which was published in 1859 as On the Origin of Species.

Wallace did extensive fieldwork, starting in the Amazon River basin. He then did fieldwork in the Malay Archipelago, where he identified the faunal divide now termed the Wallace Line, which separates the Indonesian archipelago into two distinct parts: a western portion in which the animals are largely of Asian origin, and an eastern portion where the fauna reflect Australasia. He was considered the 19th century's leading expert on the geographical distribution of animal species, and is sometimes called the "father of biogeography", or more specifically of zoogeography.

View the full Wikipedia page for Alfred Russel Wallace
↑ Return to Menu

Natural selection in the context of Allopatric speciation

Allopatric speciation (from Ancient Greek ἄλλος (állos) 'other' and πατρίς (patrís) 'fatherland') – also called geographic speciation, vicariant speciation, or its earlier name the dumbbell model – is a mode of speciation that occurs when biological populations become geographically isolated from each other to an extent that prevents or interferes with gene flow.

Various geographic changes can arise such as the movement of continents, and the formation of mountains, islands, bodies of water, or glaciers. Human activity such as agriculture or developments can also change the distribution of species populations. These factors can substantially alter a region's geography, resulting in the separation of a species population into isolated subpopulations. The vicariant populations then undergo genetic changes as they become subjected to different selective pressures, experience genetic drift, and accumulate different mutations in the separated populations' gene pools. The barriers prevent the exchange of genetic information between the two populations leading to reproductive isolation. If the two populations come into contact they will be unable to reproduce—effectively speciating. Other isolating factors such as population dispersal leading to emigration can cause speciation (for instance, the dispersal and isolation of a species on an oceanic island) and is considered a special case of allopatric speciation called peripatric speciation.

View the full Wikipedia page for Allopatric speciation
↑ Return to Menu

Natural selection in the context of 19th century in science

The 19th century in science saw the birth of science as a profession; the term scientist was coined in 1833 by William Whewell, which soon replaced the older term of (natural) philosopher.

Among the most influential ideas of the 19th century were those of Charles Darwin (alongside the independent research of Alfred Russel Wallace), who in 1859 published the book On the Origin of Species, which introduced the idea of evolution by natural selection. Another important landmark in medicine and biology were the successful efforts to prove the germ theory of disease. Following this, Louis Pasteur made the first vaccine against rabies, and also made many discoveries in the field of chemistry, including the asymmetry of crystals. In chemistry, Dmitri Mendeleev, following the atomic theory of John Dalton, created the first periodic table of elements. In physics, the experiments, theories and discoveries of Michael Faraday, Andre-Marie Ampere, James Clerk Maxwell, and their contemporaries led to the creation of electromagnetism as a new branch of science. Thermodynamics led to an understanding of heat and the notion of energy was defined.

View the full Wikipedia page for 19th century in science
↑ Return to Menu

Natural selection in the context of History of biology

The history of biology traces the study of the living world from ancient to modern times. Although the concept of biology as a single coherent field arose in the 19th century, the biological sciences emerged from traditions of medicine and natural history reaching back to Ayurveda, ancient Egyptian medicine and the works of Aristotle, Theophrastus and Galen in the ancient Greco-Roman world. This ancient work was further developed in the Middle Ages by Muslim physicians and scholars such as Avicenna. During the European Renaissance and early modern period, biological thought was revolutionized in Europe by a renewed interest in empiricism and the discovery of many novel organisms. Prominent in this movement were Vesalius and Harvey, who used experimentation and careful observation in physiology, and naturalists such as Linnaeus and Buffon who began to classify the diversity of life and the fossil record, as well as the development and behavior of organisms. Antonie van Leeuwenhoek revealed by means of microscopy the previously unknown world of microorganisms, laying the groundwork for cell theory. The growing importance of natural theology, partly a response to the rise of mechanical philosophy, encouraged the growth of natural history (although it entrenched the argument from design).

Over the 18th and 19th centuries, biological sciences such as botany and zoology became increasingly professional scientific disciplines. Lavoisier and other physical scientists began to connect the animate and inanimate worlds through physics and chemistry. Explorer-naturalists such as Alexander von Humboldt investigated the interaction between organisms and their environment, and the ways this relationship depends on geography—laying the foundations for biogeography, ecology and ethology. Naturalists began to reject essentialism and consider the importance of extinction and the mutability of species. Cell theory provided a new perspective on the fundamental basis of life. These developments, as well as the results from embryology and paleontology, were synthesized in Charles Darwin's theory of evolution by natural selection. The end of the 19th century saw the fall of spontaneous generation and the rise of the germ theory of disease, though the mechanism of inheritance remained a mystery.

View the full Wikipedia page for History of biology
↑ Return to Menu

Natural selection in the context of Origins of agriculture in West Asia

Agriculture in West Asia can be traced back to the early Neolithic in the Near East, between 10,000 and 8,000 BC, when a series of domestications by human communities took place, primarily involving a few plants (cereals and legumes) and animals (sheep, goats, bos, and pigs). In these regions, this gradually led to the introduction of agriculture and animal husbandry and their expansion to other parts of the world. The Neolithic is commonly defined as the transition from a "predatory" economy of hunter-gatherers (or "collectors") to a "productive" economy of farmer-breeders, which places the question of plant and animal domestication at the heart of the upheavals brought about by this period.

Farming and livestock breeding appeared in areas of rich biological diversity, where domesticated plants and animals were found in the wild. These regions also contain a large number of food resources in their natural state. Before their domestication, domesticated plants and animals were exploited in the form of gathering and hunting, with the methods and techniques required for domestication already known at the end of the Palaeolithic. Between 9500 and 8500 B.C., "pre-domestic" forms of agriculture were introduced; plants still had a wild character, but their reproduction was controlled by humans. Control of wild animals also began in the same period. These practices gradually led to the emergence of domesticated plant and animal species, which are distinct from the wild forms from which they derive. From a biological point of view, these domesticated species undergo a transition from natural selection to artificial selection by humans. This indicates the conclusion of the domestication process in the period between 8500 BC and 8000 BC. From this point onwards, village communities relied more on the "agro-pastoral" system, combining agriculture and animal husbandry, and less on hunting, fishing, and gathering practices.

View the full Wikipedia page for Origins of agriculture in West Asia
↑ Return to Menu

Natural selection in the context of Orthogenesis

Orthogenesis, also known as orthogenetic evolution, progressive evolution, evolutionary progress, or progressionism, is an obsolete biological hypothesis that organisms have an innate tendency to evolve in a definite direction towards some goal (teleology) due to some internal mechanism or "driving force". According to the theory, the largest-scale trends in evolution have an absolute goal such as increasing biological complexity. Prominent historical figures who have championed some form of evolutionary progress include Jean-Baptiste Lamarck, Pierre Teilhard de Chardin, and Henri Bergson.

The term orthogenesis was introduced by Wilhelm Haacke in 1893 and popularized by Theodor Eimer five years later. Proponents of orthogenesis had rejected the theory of natural selection as the organizing mechanism in evolution for a rectilinear (straight-line) model of directed evolution. With the emergence of the modern synthesis, in which genetics was integrated with evolution, orthogenesis and other alternatives to Darwinism were largely abandoned by biologists, but the notion that evolution represents progress is still widely shared; modern supporters include E. O. Wilson and Simon Conway Morris. The evolutionary biologist Ernst Mayr made the term effectively taboo in the journal Nature in 1948, by stating that it implied "some supernatural force". The American paleontologist George Gaylord Simpson (1953) attacked orthogenesis, linking it with vitalism by describing it as "the mysterious inner force". Despite this, many museum displays and textbook illustrations continue to give the impression that evolution is directed.

View the full Wikipedia page for Orthogenesis
↑ Return to Menu

Natural selection in the context of Adaptation

In biology, adaptation has three related meanings. Firstly, it is the dynamic evolutionary process of natural selection that fits organisms to their environment, enhancing their evolutionary fitness. Secondly, it is a state reached by the population during that process. Thirdly, it is a phenotypic trait or adaptive trait, with a functional role in each individual organism, that is maintained and has evolved through natural selection.

Historically, adaptation has been described from the time of the ancient Greek philosophers such as Empedocles and Aristotle. In 18th and 19th-century natural theology, adaptation was taken as evidence for the existence of a deity. Charles Darwin and Alfred Russel Wallace proposed instead that it was explained by natural selection.

View the full Wikipedia page for Adaptation
↑ Return to Menu

Natural selection in the context of Selective breeding

Selective breeding (also called artificial selection) is the process by which humans use animal breeding and plant breeding to selectively develop particular phenotypic traits (characteristics) by choosing which typically animal or plant males and females will sexually reproduce and have offspring together. Domesticated animals are known as breeds, normally bred by a professional breeder, while domesticated plants are known as varieties, cultigens, cultivars, or breeds. Two purebred animals of different breeds produce a crossbreed, and crossbred plants are called hybrids. Flowers, vegetables and fruit-trees may be bred by amateurs and commercial or non-commercial professionals: major crops are usually the provenance of the professionals.

In animal breeding artificial selection is often combined with techniques such as inbreeding, linebreeding, and outcrossing. In plant breeding, similar methods are used. Charles Darwin discussed how selective breeding had been successful in producing change over time in his 1859 book, On the Origin of Species. Its first chapter discusses selective breeding and domestication of such animals as pigeons, cats, cattle, and dogs. Darwin used artificial selection as an analogy to propose and explain the theory of natural selection but distinguished the latter from the former as a separate process that is non-directed.

View the full Wikipedia page for Selective breeding
↑ Return to Menu