Natural abundance in the context of "Atomic weight"

Play Trivia Questions online!

or

Skip to study material about Natural abundance in the context of "Atomic weight"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<

👉 Natural abundance in the context of Atomic weight

Relative atomic mass (symbol: Ar; sometimes abbreviated RAM or r.a.m.), also known by the deprecated synonym atomic weight, is a dimensionless physical quantity defined as the ratio of the average mass of atoms of a chemical element in a given sample to the atomic mass constant. The atomic mass constant (symbol: mu) is defined as being 1/12 of the mass of a carbon-12 atom. Since both quantities in the ratio are masses, the resulting value is dimensionless. These definitions remain valid even after the 2019 revision of the SI.

For a single given sample, the relative atomic mass of a given element is the weighted arithmetic mean of the masses of the individual atoms (including all its isotopes) that are present in the sample. This quantity can vary significantly between samples because the sample's origin (and therefore its radioactive history or diffusion history) may have produced combinations of isotopic abundances in varying ratios. For example, due to a different mixture of stable carbon-12 and carbon-13 isotopes, a sample of elemental carbon from volcanic methane will have a different relative atomic mass than one collected from plant or animal tissues.

↓ Explore More Topics
In this Dossier

Natural abundance in the context of Stable isotope ratio

The term stable isotope has a meaning similar to stable nuclide, but is preferably used when speaking of nuclides of a specific element. Hence, the plural form stable isotopes usually refers to isotopes of the same element. The relative abundance of such stable isotopes can be measured experimentally (isotope analysis), yielding an isotope ratio that can be used as a research tool. Theoretically, such stable isotopes could include the radiogenic daughter products of radioactive decay, used in radiometric dating. However, the expression stable-isotope ratio is preferably used to refer to isotopes whose relative abundances are affected by isotope fractionation in nature. This field is termed stable isotope geochemistry.

↑ Return to Menu

Natural abundance in the context of Enriched uranium

Enriched uranium is a type of uranium in which the percent composition of uranium-235 (written U) has been increased through the process of isotope separation. Naturally occurring uranium is composed of three major isotopes: uranium-238 (U with 99.2732–99.2752% natural abundance), uranium-235 (U, 0.7198–0.7210%), and uranium-234 (U, 0.0049–0.0059%). U is the only nuclide existing in nature (in any appreciable amount) that is fissile with thermal neutrons.

Enriched uranium is a critical component for both civil nuclear power generation and military nuclear weapons. Low-enriched uranium (below 20% U) is necessary to operate light water reactors, which make up almost 90% of nuclear electricity generation. Highly enriched uranium (above 20% U) is used for the cores of many nuclear weapons, as well as compact reactors for naval propulsion and research, as well as breeder reactors. There are about 2,000 tonnes of highly enriched uranium in the world.

↑ Return to Menu

Natural abundance in the context of Isotopes of uranium

Uranium (92U) is a naturally occurring radioactive element (radioelement) with no stable isotopes. It has two primordial isotopes, uranium-238 and uranium-235, that have long half-lives and are found in appreciable quantity in Earth's crust. The decay product uranium-234 is also found. Other isotopes such as uranium-233 have been produced in breeder reactors. In addition to isotopes found in nature or nuclear reactors, many isotopes with far shorter half-lives have been produced, ranging from U to U (except for U). The standard atomic weight of natural uranium is 238.02891(3).

Natural uranium consists of three main isotopes, U (99.2739–99.2752% natural abundance), U (0.7198–0.7202%), and U (0.0050–0.0059%). All three isotopes are radioactive (i.e., they are radioisotopes), and the most abundant and stable is uranium-238, with a half-life of 4.463×10 years (about the age of the Earth).

↑ Return to Menu

Natural abundance in the context of Thorium

Thorium is a chemical element; it has symbol Th and atomic number 90. Thorium is a weakly radioactive light silver metal which tarnishes olive grey when it is exposed to air, forming thorium dioxide; it is moderately soft, malleable, and has a high melting point. Thorium is an electropositive actinide whose chemistry is dominated by the +4 oxidation state; it is quite reactive and can ignite in air when finely divided.

All known thorium isotopes are unstable. The most stable isotope, Th, has a half-life of 14.0 billion years, or about the age of the universe; it decays very slowly via alpha decay, starting a decay chain named the thorium series that ends at stable Pb. On Earth, thorium and uranium are the only elements with no stable or nearly-stable isotopes that still occur naturally in large quantities as primordial elements. Thorium is estimated to be over three times as abundant as uranium in the Earth's crust, and is chiefly refined from monazite sands as a by-product of extracting rare-earth elements.

↑ Return to Menu

Natural abundance in the context of Titanium isotope

Naturally occurring titanium (22Ti) is composed of five stable isotopes; Ti, Ti, Ti, Ti and Ti with Ti being the most abundant (73.8% natural abundance). Twenty-three radioisotopes have been characterized, with the most stable being Ti with a half-life of 59.1 years and Ti with a half-life of 184.8 minutes. All of the remaining radioactive isotopes have half-lives that are less than 10 minutes, and the majority of these have half-lives that are less than one second.

The isotopes of titanium range from Ti to Ti. The primary decay mode for isotopes lighter than the stable isotopes is β and the primary mode for the heavier ones is β; the decay products are respectively scandium isotopes and vanadium isotopes.

↑ Return to Menu