National Institute of Standards and Technology in the context of "Risk management"

⭐ In the context of risk management, the National Institute of Standards and Technology (NIST) is recognized for its contribution to…

Ad spacer

⭐ Core Definition: National Institute of Standards and Technology

The National Institute of Standards and Technology (NIST) is an agency of the United States Department of Commerce whose mission is to promote American innovation and industrial competitiveness. NIST's activities are organized into physical science laboratory programs that include nanoscale science and technology, engineering, information technology, neutron research, material measurement, and physical measurement. From 1901 to 1988, the agency was named the National Bureau of Standards.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

šŸ‘‰ National Institute of Standards and Technology in the context of Risk management

Risk management is the identification, evaluation, and prioritization of risks, followed by the minimization, monitoring, and control of the impact or probability of those risks occurring. Risks can come from various sources (i.e, threats) including uncertainty in international markets, political instability, dangers of project failures (at any phase in design, development, production, or sustaining of life-cycles), legal liabilities, credit risk, accidents, natural causes and disasters, deliberate attack from an adversary, or events of uncertain or unpredictable root-cause. Retail traders also apply risk management by using fixed percentage position sizing and risk-to-reward frameworks to avoid large drawdowns and support consistent decision-making under pressure.

Two types of events are analyzed in risk management: risks and opportunities. Negative events can be classified as risks while positive events are classified as opportunities. Risk management standards have been developed by various institutions, including the Project Management Institute, the National Institute of Standards and Technology, actuarial societies, and International Organization for Standardization. Methods, definitions and goals vary widely according to whether the risk management method is in the context of project management, security, engineering, industrial processes, financial portfolios, actuarial assessments, or public health and safety. Certain risk management standards have been criticized for having no measurable improvement on risk, whereas the confidence in estimates and decisions seems to increase.

↓ Explore More Topics
In this Dossier

National Institute of Standards and Technology in the context of ASTM International

ASTM International, formerly known as American Society for Testing and Materials, is a standards organization that develops and publishes voluntary consensus technical international standards for a wide range of materials, products, systems and services. Some 12,575 apply globally. The headquarters is in West Conshohocken, Pennsylvania, about 5Ā mi (8.0Ā km) northwest of Philadelphia. It was founded in 1902 as the American Section of the International Association for Testing Materials.

In addition to its traditional standards work, ASTM operates several global initiatives advancing additive manufacturing, advanced manufacturing, and emerging technologies, including the Additive Manufacturing Center of Excellence (AM CoE), the acquisition of Wohlers Associates for market intelligence and advisory services, and the NIST-funded Standardization Center of Excellence (SCOE).

↑ Return to Menu

National Institute of Standards and Technology in the context of Standard temperature and pressure

Standard temperature and pressure (STP) or standard conditions for temperature and pressure are various standard sets of conditions for experimental measurements used to allow comparisons to be made between different sets of data. The most used standards are those of the International Union of Pure and Applied Chemistry (IUPAC) and the National Institute of Standards and Technology (NIST), although these are not universally accepted. Other organizations have established a variety of other definitions.

In industry and commerce, the standard conditions for temperature and pressure are often necessary for expressing the volumes of gases and liquids and related quantities such as the rate of volumetric flow (the volumes of gases vary significantly with temperature and pressure): standard cubic meters per second (Sm/s), and normal cubic meters per second (Nm/s).

↑ Return to Menu

National Institute of Standards and Technology in the context of Metrology

Metrology is the scientific study of measurement. It establishes a common understanding of units, crucial in linking human activities. Modern metrology has its roots in the French Revolution's political motivation to standardise units in France when a length standard taken from a natural source was proposed. This led to the creation of the decimal-based metric system in 1795, establishing a set of standards for other types of measurements. Several other countries adopted the metric system between 1795 and 1875; to ensure conformity between the countries, the Bureau International des Poids et Mesures (BIPM) was established by the Metre Convention. This has evolved into the International System of Units (SI) as a result of a resolution at the 11th General Conference on Weights and Measures (CGPM) in 1960.

Metrology is divided into three basic overlapping activities:

↑ Return to Menu

National Institute of Standards and Technology in the context of Deborah S. Jin

Deborah Shiu-lan Jin (Chinese: 金秀兰; pinyin: JÄ«n XiùlĆ”n; November 15, 1968 – September 15, 2016) was an American physicist and fellow with the National Institute of Standards and Technology (NIST); Professor Adjunct, Department of Physics at the University of Colorado; and a fellow of the JILA, a NIST joint laboratory with the University of Colorado.

She was considered a pioneer in polar molecular quantum chemistry. From 1995 to 1997 she worked with Eric Cornell and Carl Wieman at JILA, where she was involved in some of the earliest studies of dilute gas Bose-Einstein condensates. In 2003 Jin's team at JILA made the first fermionic condensate, a new form of matter. She used magnetic traps and lasers to cool fermionic atomic gases to less than 100 billionths of a degree above zero, successfully demonstrating quantum degeneracy and the formation of a molecular Bose-Einstein condensate. Jin was frequently mentioned as a strong candidate for the Nobel Prize in Physics. In 2002, Discover magazine recognized her as one of the 50 most important women in science.

↑ Return to Menu

National Institute of Standards and Technology in the context of Kibble balance

A Kibble balance (also formerly known as a watt balance) is an electromechanical measuring instrument that measures the weight of a test object very precisely by the electric current and voltage needed to produce a compensating force. It is a metrological instrument that can realize the definition of the kilogram unit of mass based on fundamental constants.

It was originally known as a watt balance because the weight of the test mass is proportional to the product of current and voltage, which is measured in watts. In June 2016, two months after the death of its inventor, Bryan Kibble, metrologists of the Consultative Committee for Units of the International Committee for Weights and Measures agreed to rename the device in his honor.

↑ Return to Menu