International Union of Geological Sciences in the context of "Age (geology)"

⭐ In the context of geological time scales, the International Union of Geological Sciences (IUGS) plays a crucial role in ensuring standardization through which of its constituent bodies?

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<

👉 International Union of Geological Sciences in the context of Age (geology)

The geologic time scale or geological time scale (GTS) is a representation of time based on the rock record of Earth. It is a system of chronological dating that uses chronostratigraphy (the process of relating strata to time) and geochronology (a scientific branch of geology that aims to determine the age of rocks). It is used primarily by Earth scientists (including geologists, paleontologists, geophysicists, geochemists, and paleoclimatologists) to describe the timing and relationships of events in geologic history. The time scale has been developed through the study of rock layers and the observation of their relationships and identifying features such as lithologies, paleomagnetic properties, and fossils. The definition of standardised international units of geological time is the responsibility of the International Commission on Stratigraphy (ICS), a constituent body of the International Union of Geological Sciences (IUGS), whose primary objective is to precisely define global chronostratigraphic units of the International Chronostratigraphic Chart (ICC) that are used to define divisions of geological time. The chronostratigraphic divisions are in turn used to define geochronologic units.

↓ Explore More Topics
In this Dossier

International Union of Geological Sciences in the context of Ordovician

The Ordovician (/ɔːrdəˈvɪʃi.ən, -d-, -ˈvɪʃən/ or-də-VISH-ee-ən, -⁠doh-, -⁠VISH-ən) is a geologic period and system, the second of six periods of the Paleozoic Era, and the second of twelve periods of the Phanerozoic Eon. The Ordovician spans 41.6 million years from the end of the Cambrian Period 486.85 Ma (million years ago) to the start of the Silurian Period 443.1 Ma.

The Ordovician, named after the Welsh tribe of the Ordovices, was defined by Charles Lapworth in 1879 to resolve a dispute between followers of Adam Sedgwick and Roderick Murchison, who were placing the same rock beds in North Wales in the Cambrian and Silurian systems, respectively. Lapworth recognized that the fossil fauna in the disputed strata were different from those of either the Cambrian or the Silurian systems, and placed them in a system of their own. The Ordovician received international approval in 1960 (forty years after Lapworth's death), when it was adopted as an official period of the Paleozoic Era by the International Geological Congress.

↑ Return to Menu

International Union of Geological Sciences in the context of Pleistocene

The Pleistocene (/ˈplstəˌsn, -st-/ PLY-stə-seen, -⁠stoh-; referred to colloquially as the Ice Age) is the geological epoch that lasted from c. 2.58 million to 11,700 years ago, spanning the Earth's most recent period of repeated glaciations. Before a change was finally confirmed in 2009 by the International Union of Geological Sciences, the cutoff of the Pleistocene and the preceding Pliocene was regarded as being 1.806 million years Before Present (BP). Publications from earlier years may use either definition of the period. The end of the Pleistocene corresponds with the end of the last glacial period and also with the end of the Paleolithic age used in archaeology. The name comes from Ancient Greek πλεῖστος (pleîstos), meaning "most", and καινός (kainós), meaning "new, recent".

The aridification and cooling trends of the preceding Neogene were continued in the Pleistocene. The climate was strongly variable depending on the glacial cycle, oscillating between cold glacial periods and warmer interglacials, with the sea levels being up to 120 metres (390 ft) lower than present at peak glaciation, allowing the periodic connection of Asia and North America via the Beringia land bridge, and the covering of most of northern North America by the large Laurentide Ice Sheet.

↑ Return to Menu

International Union of Geological Sciences in the context of Anthropocene

Anthropocene is a term that has been used to refer to the period of time during which humanity has become a planetary force of change. It appears in scientific and social discourse, especially with respect to accelerating geophysical and biochemical changes that characterize the 20th and 21st centuries on Earth. Originally a proposal for a new geological epoch following the Holocene, it was rejected as such in 2024 by the International Commission on Stratigraphy (ICS) and the International Union of Geological Sciences (IUGS).

The term has been used in research relating to Earth's water, geology, geomorphology, landscape, limnology, hydrology, ecosystems and climate. The effects of human activities on Earth can be seen, for example, in regards to biodiversity loss, and climate change. Various start dates for the Anthropocene have been proposed, ranging from the beginning of the Neolithic Revolution (12,000–15,000 years ago), to as recently as the 1960s. The biologist Eugene F. Stoermer is credited with first coining and using the term anthropocene informally in the 1980s; Paul J. Crutzen re-invented and popularized the term.

↑ Return to Menu

International Union of Geological Sciences in the context of Tholeiite

The tholeiitic magma series (/ˌθlˈɪtɪk/) is one of two main magma series in subalkaline igneous rocks, the other being the calc-alkaline series. A magma series is a chemically distinct range of magma compositions that describes the evolution of a mafic magma into a more evolved, silica rich end member. Rock types of the tholeiitic magma series include tholeiitic basalt, ferro-basalt, tholeiitic basaltic andesite, tholeiitic andesite, dacite and rhyolite. The variety of basalt in the series was originally called tholeiite but the International Union of Geological Sciences recommends that tholeiitic basalt be used in preference to that term.

Tholeiitic rock types tend to be more enriched in iron and less enriched in magnesium and aluminium than calc-alkaline rock types. They are thought to form in a less oxidized environment than calc-alkaline rocks. Tholeiitic basalt is formed at mid-ocean ridges and makes up much of the oceanic crust. Almost all the basalt found on the Moon is tholeiitic basalt.

↑ Return to Menu

International Union of Geological Sciences in the context of Late Pleistocene

The Late Pleistocene is an unofficial age in the international geologic timescale in chronostratigraphy, also known as the Upper Pleistocene from a stratigraphic perspective. It is intended to be the fourth division of the Pleistocene Epoch within the ongoing Quaternary Period. It is currently defined as the time between c. 129,000 and c. 11,700 years ago. The late Pleistocene equates to the proposed Tarantian Age of the geologic time scale, preceded by the officially ratified Chibanian (commonly known as the Middle Pleistocene). The beginning of the Late Pleistocene is the transition between the end of the Penultimate Glacial Period and the beginning of the Last Interglacial around 130,000 years ago (corresponding with the beginning of Marine Isotope Stage 5). The Late Pleistocene ends with the termination of the Younger Dryas, some 11,700 years ago when the Holocene Epoch began.

The term Upper Pleistocene is currently in use as a provisional or "quasi-formal" designation by the International Union of Geological Sciences (IUGS). Although the three oldest ages of the Pleistocene (the Gelasian, the Calabrian and the Chibanian) have been officially defined, the late Pleistocene has yet to be formally defined.

↑ Return to Menu