Nanoscopic scale in the context of Molecular engineering


Nanoscopic scale in the context of Molecular engineering

Nanoscopic scale Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Nanoscopic scale in the context of "Molecular engineering"


⭐ Core Definition: Nanoscopic scale

Nanotechnology is the manipulation of matter with at least one dimension sized from 1 to 100 nanometers (nm). At this scale, commonly known as the nanoscale, surface area and quantum mechanical effects become important in describing properties of matter. This definition of nanotechnology includes all types of research and technologies that deal with these special properties. It is common to see the plural form "nanotechnologies" as well as "nanoscale technologies" to refer to research and applications whose common trait is scale. An earlier understanding of nanotechnology referred to the particular technological goal of precisely manipulating atoms and molecules for fabricating macroscale products, now referred to as molecular nanotechnology.

Nanotechnology defined by scale includes fields of science such as surface science, organic chemistry, molecular biology, semiconductor physics, energy storage, engineering, microfabrication, and molecular engineering. The associated research and applications range from extensions of conventional device physics to molecular self-assembly, from developing new materials with dimensions on the nanoscale to direct control of matter on the atomic scale.

↓ Menu
HINT:

In this Dossier

Nanoscopic scale in the context of Nanorobotics

Nanoid robotics, or for short, nanorobotics or nanobotics, is an emerging technology field creating machines or robots, which are called nanorobots or simply nanobots, whose components are at or near the scale of a nanometer (10 meters). More specifically, nanorobotics (as opposed to microrobotics) refers to the nanotechnology engineering discipline of designing and building nanorobots with devices ranging in size from 0.1 to 10 micrometres and constructed of nanoscale or molecular components. The terms nanobot, nanoid, nanite, nanomachine and nanomite have also been used to describe such devices currently under research and development.

Nanomachines are largely in the research and development phase, but some primitive molecular machines and nanomotors have been tested. An example is a sensor having a switch approximately 1.5 nanometers across, able to count specific molecules in the chemical sample. The first useful applications of nanomachines may be in nanomedicine. For example, biological machines could be used to identify and destroy cancer cells. Another potential application is the detection of toxic chemicals, and the measurement of their concentrations, in the environment. Rice University has demonstrated a single-molecule car developed by a chemical process and including Buckminsterfullerenes (buckyballs) for wheels. It is actuated by controlling the environmental temperature and by positioning a scanning tunneling microscope tip.

View the full Wikipedia page for Nanorobotics
↑ Return to Menu

Nanoscopic scale in the context of Ultrafine particle

Ultrafine particles (UFPs) are particulate matter of nanoscale size (less than 0.1 μm or 100 nm in diameter). Regulations do not exist for this size class of ambient air pollution particles, which are far smaller than the regulated PM10 and PM2.5 particle classes and are believed to have several more aggressive health implications than those classes of larger particulates per unit mass.Although they remain largely unregulated, the World Health Organization has published good practice statements regarding measuring UFPs.

There are two main divisions that categorize types of UFPs. UFPs can either be carbon-based or metallic, and then can be further subdivided by their magnetic properties. Electron microscopy and special physical lab conditions allow scientists to observe UFP morphology. Airborne UFPs can be measured using a condensation particle counter, in which particles are mixed with alcohol vapor and then cooled, allowing the vapor to condense around them, after which they are counted using a light scanner. UFPs are both manufactured and naturally occurring. UFPs are the main constituent of airborne particulate matter by number, although they contribute little to mass. Owing to their large quantity and ability to penetrate deep within the lung, UFPs are a major concern for respiratory exposure and health.

View the full Wikipedia page for Ultrafine particle
↑ Return to Menu

Nanoscopic scale in the context of DNA nanotechnology

DNA nanotechnology is the design and manufacture of artificial nucleic acid structures for technological uses. In this field, nucleic acids are used as non-biological engineering materials for nanotechnology rather than as the carriers of genetic information in living cells. Researchers in the field have created static structures such as two- and three-dimensional crystal lattices, nanotubes, polyhedra, and arbitrary shapes, and functional devices such as molecular machines and DNA computers. The field is beginning to be used as a tool to solve basic science problems in structural biology and biophysics, including applications in X-ray crystallography and nuclear magnetic resonance spectroscopy of proteins to determine structures. Potential applications in molecular scale electronics and nanomedicine are also being investigated.

The conceptual foundation for DNA nanotechnology was first laid out by Nadrian Seeman in the early 1980s, and the field began to attract widespread interest in the mid-2000s. This use of nucleic acids is enabled by their strict base pairing rules, which cause only portions of strands with complementary base sequences to bind together to form strong, rigid double helix structures. This allows for the rational design of base sequences that will selectively assemble to form complex target structures with precisely controlled nanoscale features. Several assembly methods are used to make these structures, including tile-based structures that assemble from smaller structures, folding structures using the DNA origami method, and dynamically reconfigurable structures using strand displacement methods. The field's name specifically references DNA, but the same principles have been used with other types of nucleic acids as well, leading to the occasional use of the alternative name nucleic acid nanotechnology.

View the full Wikipedia page for DNA nanotechnology
↑ Return to Menu

Nanoscopic scale in the context of Substrate presentation

In molecular biology, substrate presentation is a biological process that activates a protein. The protein is sequestered away from its substrate and then activated by release and exposure to its substrate. A substrate is typically the substance on which an enzyme acts but can also be a protein surface to which a ligand binds. In the case of an interaction with an enzyme, the protein or organic substrate typically changes chemical form. Substrate presentation differs from allosteric regulation in that the enzyme need not change its conformation to begin catalysis. Substrate presentation is best described for domain partitioning at nanoscopic distances (<100 nm).

View the full Wikipedia page for Substrate presentation
↑ Return to Menu

Nanoscopic scale in the context of Nanomaterials

Nanomaterials describe, in principle, chemical substances or materials of which a single unit is sized (in at least one dimension) between 1 and 100 nm (the usual definition of nanoscale).

Nanomaterials research takes a materials science-based approach to nanotechnology, leveraging advances in materials metrology and synthesis which have been developed in support of microfabrication research. Materials with structure at the nanoscale often have unique optical, electronic, thermo-physical or mechanical properties.

View the full Wikipedia page for Nanomaterials
↑ Return to Menu

Nanoscopic scale in the context of Nanostructure

A nanostructure is a structure of intermediate size between microscopic and molecular structures. Nanostructural detail is microstructure at nanoscale.

In describing nanostructures, it is necessary to differentiate between the number of dimensions in the volume of an object which are on the nanoscale. Nanotextured surfaces have one dimension on the nanoscale, i.e., only the thickness of the surface of an object is between 0.1 and 100 nm. Nanotubes have two dimensions on the nanoscale, i.e., the diameter of the tube is between 0.1 and 100 nm; its length can be far more. Finally, spherical nanoparticles have three dimensions on the nanoscale, i.e., the particle is between 0.1 and 100 nm in each spatial dimension. The terms nanoparticles and ultrafine particles (UFP) are often used synonymously although UFP can reach into the micrometre range. The term nanostructure is often used when referring to magnetic technology.

View the full Wikipedia page for Nanostructure
↑ Return to Menu

Nanoscopic scale in the context of Ferrofluid

Ferrofluid is a dark coloured liquid that is attracted to the poles of a magnet. It is a colloidal liquid made of nanoscale ferromagnetic or ferrimagnetic particles suspended inside acarrier fluid (usually an organic solvent or water). Each magnetic particle is thoroughly coated with a surfactant to inhibit clumping. Large ferromagnetic particles can be ripped out of the homogeneous colloidal mixture, forming a separate clump of magnetic dust when exposed to strong magnetic fields. The magnetic attraction of tiny nanoparticles is weak enough that the surfactant's Van der Waals force is sufficient to prevent magnetic clumping or agglomeration. Ferrofluids usually do not retain magnetization in the absence of an externally applied field and thus are often classified as "superparamagnets" rather than ferromagnets. A recent review article titled "Magnetic nanofluids (Ferrofluids): Recent advances, applications, challenges, and future directions", provides a pedagogical description of magnetic fluids, with the necessary background, key concepts, physics, experimental protocols, design of experiments, challenges, and future directions.

In contrast to ferrofluids, magnetorheological fluids (MR fluids) are magnetic fluids with larger particles. That is, a ferrofluid contains primarily nanoparticles, while an MR fluid contains primarily micrometre-scale particles. The particles in a ferrofluid are suspended by Brownian motion and generally will not settle under normal conditions, while particles in an MR fluid are too heavy to be suspended by Brownian motion. Particles in an MR fluid will therefore settle over time because of the inherent density difference between the particles and their carrier fluid. As a result, ferrofluids and MR fluids have very different applications.

View the full Wikipedia page for Ferrofluid
↑ Return to Menu

Nanoscopic scale in the context of Nanotribology

Nanotribology is the branch of tribology that studies friction, wear, adhesion and lubrication phenomena at the nanoscale, where atomic interactions and quantum effects are not negligible. The aim of this discipline is characterizing and modifying surfaces for both scientific and technological purposes.

Nanotribological research has historically involved both direct and indirect methodologies. Microscopy techniques, including Scanning Tunneling Microscope (STM), Atomic-Force Microscope (AFM) and Surface Forces Apparatus, (SFA) have been used to analyze surfaces with extremely high resolution, while indirect methods such as computational methods and Quartz crystal microbalance (QCM) have also been extensively employed.

View the full Wikipedia page for Nanotribology
↑ Return to Menu

Nanoscopic scale in the context of Nanoelectromechanical systems

Nanoelectromechanical systems (NEMS) are a class of devices integrating electrical and mechanical functionality on the nanoscale. NEMS form the next logical miniaturization step from so-called microelectromechanical systems, or MEMS devices. NEMS typically integrate transistor-like nanoelectronics with mechanical actuators, pumps, or motors, and may thereby form physical, biological, and chemical sensors. The name derives from typical device dimensions in the nanometer range, leading to low mass, high mechanical resonance frequencies, potentially large quantum mechanical effects such as zero point motion, and a high surface-to-volume ratio useful for surface-based sensing mechanisms. Applications include accelerometers and sensors to detect chemical substances in the air.

View the full Wikipedia page for Nanoelectromechanical systems
↑ Return to Menu

Nanoscopic scale in the context of Nanomotor

A nanomotor is a molecular or nanoscale device capable of converting energy into movement. It can typically generate forces on the order of piconewtons.

While nanoparticles have been utilized by artists for centuries, such as in the famous Lycurgus cup, scientific research into nanotechnology did not come about until recently. In 1959, Richard Feynman gave a famous talk entitled "There's Plenty of Room at the Bottom" at the American Physical Society's conference hosted at Caltech. He went on to wage a scientific bet that no one person could design a motor smaller than 400 μm on any side. The purpose of the bet (as with most scientific bets) was to inspire scientists to develop new technologies, and anyone who could develop a nanomotor could claim the $1,000 USD prize. However, his purpose was thwarted by William McLellan, who fabricated a nanomotor without developing new methods. Nonetheless, Richard Feynman's speech inspired a new generation of scientists to pursue research into nanotechnology.

View the full Wikipedia page for Nanomotor
↑ Return to Menu

Nanoscopic scale in the context of Motor protein

Motor proteins are a class of molecular motors that can move along the cytoskeleton of cells. They do this by converting chemical energy into mechanical work by the hydrolysis of ATP.

View the full Wikipedia page for Motor protein
↑ Return to Menu

Nanoscopic scale in the context of Molecular scale electronics

Molecular-scale electronics, also called single-molecule electronics, is a branch of nanotechnology that uses single molecules, or nanoscale collections of single molecules, as electronic components. Because single molecules constitute the smallest stable structures imaginable, this miniaturization is the ultimate goal for shrinking electrical circuits.

The field is often termed simply as "molecular electronics", but this term is also used to refer to the distantly related field of conductive polymers and organic electronics, which uses the properties of molecules to affect the bulk properties of a material. A nomenclature distinction has been suggested so that molecular materials for electronics refers to this latter field of bulk applications, while molecular-scale electronics refers to the nanoscale single-molecule applications treated here.

View the full Wikipedia page for Molecular scale electronics
↑ Return to Menu

Nanoscopic scale in the context of DNA origami

DNA origami is the nanoscale folding of DNA to create arbitrary two- and three-dimensional shapes at the nanoscale. The specificity of the interactions between complementary base pairs makes DNA a useful construction material, through the design of its base sequences. DNA is a well-understood material that is suitable for creating scaffolds that hold other molecules in place or to create structures all on its own.

DNA origami was the cover story of Nature on March 16, 2006. Since then, DNA origami has progressed past an art form and has found a number of applications from drug delivery systems to uses as circuitry in plasmonic devices; however, most commercial applications remain in a concept or testing phase.

View the full Wikipedia page for DNA origami
↑ Return to Menu