Ferrimagnetic interaction in the context of "Ferrofluid"

Play Trivia Questions online!

or

Skip to study material about Ferrimagnetic interaction in the context of "Ferrofluid"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<

👉 Ferrimagnetic interaction in the context of Ferrofluid

Ferrofluid is a dark coloured liquid that is attracted to the poles of a magnet. It is a colloidal liquid made of nanoscale ferromagnetic or ferrimagnetic particles suspended inside acarrier fluid (usually an organic solvent or water). Each magnetic particle is thoroughly coated with a surfactant to inhibit clumping. Large ferromagnetic particles can be ripped out of the homogeneous colloidal mixture, forming a separate clump of magnetic dust when exposed to strong magnetic fields. The magnetic attraction of tiny nanoparticles is weak enough that the surfactant's Van der Waals force is sufficient to prevent magnetic clumping or agglomeration. Ferrofluids usually do not retain magnetization in the absence of an externally applied field and thus are often classified as "superparamagnets" rather than ferromagnets. A recent review article titled "Magnetic nanofluids (Ferrofluids): Recent advances, applications, challenges, and future directions", provides a pedagogical description of magnetic fluids, with the necessary background, key concepts, physics, experimental protocols, design of experiments, challenges, and future directions.

In contrast to ferrofluids, magnetorheological fluids (MR fluids) are magnetic fluids with larger particles. That is, a ferrofluid contains primarily nanoparticles, while an MR fluid contains primarily micrometre-scale particles. The particles in a ferrofluid are suspended by Brownian motion and generally will not settle under normal conditions, while particles in an MR fluid are too heavy to be suspended by Brownian motion. Particles in an MR fluid will therefore settle over time because of the inherent density difference between the particles and their carrier fluid. As a result, ferrofluids and MR fluids have very different applications.

↓ Explore More Topics
In this Dossier