Name binding in the context of Identifier


Name binding in the context of Identifier

Name binding Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Name binding in the context of "Identifier"


⭐ Core Definition: Name binding

In programming languages, name binding is the association of entities (data and/or code) with identifiers. An identifier bound to an object is said to reference that object. Machine languages have no built-in notion of identifiers, but name-object bindings as a service and notation for the programmer is implemented by programming languages. Binding is intimately connected with scoping, as scope determines which names bind to which objects – at which locations in the program code (lexically) and in which one of the possible execution paths (temporally).

Use of an identifier id in a context that establishes a binding for id is called a binding (or defining) occurrence. In all other occurrences (e.g., in expressions, assignments, and subprogram calls), an identifier stands for what it is bound to; such occurrences are called applied occurrences.

↓ Menu
HINT:

In this Dossier

Name binding in the context of Lambda calculus

In mathematical logic, the lambda calculus (also written as λ-calculus) is a formal system for expressing computation based on function abstraction and application using variable binding and substitution. Untyped lambda calculus, the topic of this article, is a universal machine, a model of computation that can be used to simulate any Turing machine (and vice versa). It was introduced by the mathematician Alonzo Church in the 1930s as part of his research into the foundations of mathematics. In 1936, Church found a formulation which was logically consistent, and documented it in 1940.

View the full Wikipedia page for Lambda calculus
↑ Return to Menu

Name binding in the context of Variable (computer science)

In high-level programming, a variable is an abstract storage or indirection location paired with an associated symbolic name, which contains some known or unknown quantity of data or object referred to as a value; or in simpler terms, a variable is a named container for a particular set of bits or type of data (like integer, float, string, etc...) or undefined. A variable can eventually be associated with or identified by a memory address. The variable name is the usual way to reference the stored value, in addition to referring to the variable itself, depending on the context. This separation of name and content allows the name to be used independently of the exact information it represents. The identifier in computer source code can be bound to a value during run time, and the value of the variable may thus change during the course of program execution.

Variables in programming may not directly correspond to the concept of variables in mathematics. The latter is abstract, having no reference to a physical object such as storage location. The value of a computing variable is not necessarily part of an equation or formula as in mathematics. Furthermore, the variables can also be constants if the value is defined statically. Variables in computer programming are frequently given long names to make them relatively descriptive of their use, whereas variables in mathematics often have terse, one- or two-character names for brevity in transcription and manipulation.

View the full Wikipedia page for Variable (computer science)
↑ Return to Menu

Name binding in the context of Anonymous function

In computer programming, an anonymous function (function literal, lambda function, or block) is a function definition that is not bound to an identifier. Anonymous functions are often arguments being passed to higher-order functions or used for constructing the result of a higher-order function that needs to return a function.If the function is only used once, or a limited number of times, an anonymous function may be syntactically lighter than using a named function. Anonymous functions are ubiquitous in functional programming languages and other languages with first-class functions, where they fulfil the same role for the function type as literals do for other data types.

Anonymous functions originate in the work of Alonzo Church in his invention of the lambda calculus, in which all functions are anonymous, in 1936, before electronic computers. In several programming languages, anonymous functions are introduced using the keyword lambda, and anonymous functions are often referred to as lambdas or lambda abstractions. Anonymous functions have been a feature of programming languages since Lisp in 1958, and a growing number of modern programming languages support anonymous functions.

View the full Wikipedia page for Anonymous function
↑ Return to Menu

Name binding in the context of Lambda-recursive function

In mathematical logic, the lambda calculus (also written as λ-calculus) is a formal system for expressing computation based on function abstraction and application using variable binding and substitution. Untyped lambda calculus, the topic of this article, is a universal machine, i.e. a model of computation that can be used to simulate any Turing machine (and vice versa). It was introduced by the mathematician Alonzo Church in the 1930s as part of his research into the foundations of mathematics. In 1936, Church found a formulation which was logically consistent, and documented it in 1940.

View the full Wikipedia page for Lambda-recursive function
↑ Return to Menu

Name binding in the context of Scope (computer science)

In computer programming, the scope of a name binding (an association of a name to an entity, such as a variable) is the part of a program where the name binding is valid; that is, where the name can be used to refer to the entity. In other parts of the program, the name may refer to a different entity (it may have a different binding), or to nothing at all (it may be unbound). Scope helps prevent name collisions by allowing the same name to refer to different objects – as long as the names have separate scopes. The scope of a name binding is also known as the visibility of an entity, particularly in older or more technical literature—this is in relation to the referenced entity, not the referencing name.

The term "scope" is also used to refer to the set of all name bindings that are valid within a part of a program or at a given point in a program, which is more correctly referred to as context or environment.

View the full Wikipedia page for Scope (computer science)
↑ Return to Menu