Motor neuron in the context of Neurobiological


Motor neuron in the context of Neurobiological

Motor neuron Study page number 1 of 3

Play TriviaQuestions Online!

or

Skip to study material about Motor neuron in the context of "Neurobiological"


⭐ Core Definition: Motor neuron

A motor neuron (or motoneuron), also known as efferent neuron is a neuron that allows for both voluntary and involuntary movements of the body through muscles and glands. Its cell body is located in the motor cortex, brainstem or the spinal cord, and whose axon (fiber) projects to the spinal cord or outside of the spinal cord to directly or indirectly control effector organs, mainly muscles and glands. There are two types of motor neuronupper motor neurons and lower motor neurons. Axons from upper motor neurons synapse onto interneurons in the spinal cord and occasionally directly onto lower motor neurons. The axons from the lower motor neurons are efferent nerve fibers that carry signals from the spinal cord to the effectors. Types of lower motor neurons are alpha motor neurons, beta motor neurons, and gamma motor neurons.

A single motor neuron may innervate many muscle fibres and a muscle fibre can undergo many action potentials in the time taken for a single muscle twitch. Innervation takes place at a neuromuscular junction and twitches can become superimposed as a result of summation or a tetanic contraction. Individual twitches can become indistinguishable, and tension rises smoothly eventually reaching a plateau.

↓ Menu
HINT:

In this Dossier

Motor neuron in the context of Neuroscience

Neuroscience is the scientific study of the nervous system (the brain, spinal cord, and peripheral nervous system), its functions, and its disorders. It is a multidisciplinary science that combines physiology, anatomy, molecular biology, developmental biology, cytology, psychology, physics, computer science, chemistry, medicine, statistics, and mathematical modeling to understand the fundamental and emergent properties of neurons, glia, and neural circuits. The understanding of the biological basis of learning, memory, behavior, perception, and consciousness has been described by Eric Kandel as the "epic challenge" of the biological sciences.

The scope of neuroscience has broadened over time to include different approaches used to study the nervous system at different scales. The techniques used by neuroscientists have expanded enormously, from molecular and cellular studies of individual neurons to imaging of sensory, motor, and cognitive tasks in the brain.

View the full Wikipedia page for Neuroscience
↑ Return to Menu

Motor neuron in the context of Reflex

In biology, a reflex, or reflex action, is an involuntary, unplanned sequence or action and nearly instantaneous response to a stimulus.

Reflexes are found with varying levels of complexity in organisms with a nervous system. A reflex occurs via neural pathways in the nervous system called reflex arcs. A stimulus initiates a neural signal, which is carried to a synapse. The signal is then transferred across the synapse to a motor neuron, which evokes a target response. These neural signals do not always travel to the brain, so many reflexes are an automatic response to a stimulus that does not receive or need conscious thought.

View the full Wikipedia page for Reflex
↑ Return to Menu

Motor neuron in the context of Spinal nerve

A spinal nerve is a mixed nerve, which carries motor, sensory, and autonomic signals between the spinal cord and the body. In the human body there are 31 pairs of spinal nerves, one on each side of the vertebral column. These are grouped into the corresponding cervical, thoracic, lumbar, sacral and coccygeal regions of the spine. There are eight pairs of cervical nerves, twelve pairs of thoracic nerves, five pairs of lumbar nerves, five pairs of sacral nerves, and one pair of coccygeal nerves. The spinal nerves are part of the peripheral nervous system.

View the full Wikipedia page for Spinal nerve
↑ Return to Menu

Motor neuron in the context of Nerve

A nerve is an enclosed, cable-like bundle of nerve fibers (called axons). Nerves have historically been considered the basic units of the peripheral nervous system. A nerve provides a common pathway for the electrochemical nerve impulses called action potentials that are transmitted along each of the axons to peripheral organs or, in the case of sensory nerves, from the periphery back to the central nervous system. Each axon is an extension of an individual neuron, along with other supportive cells such as some Schwann cells that coat the axons in myelin.

Each axon is surrounded by a layer of connective tissue called the endoneurium. The axons are bundled together into groups called fascicles, and each fascicle is wrapped in a layer of connective tissue called the perineurium. The entire nerve is wrapped in a layer of connective tissue called the epineurium. Nerve cells (often called neurons) are further classified as either sensory or motor.

View the full Wikipedia page for Nerve
↑ Return to Menu

Motor neuron in the context of Flaccid paralysis

Flaccid paralysis is a neurological condition characterized by weakness or paralysis and reduced muscle tone without other obvious cause (e.g., trauma). This abnormal condition may be caused by disease or by trauma affecting the nerves associated with the involved muscles. For example, if the somatic nerves to a skeletal muscle are severed, then the muscle will exhibit flaccid paralysis. When muscles enter this state, they become limp and cannot contract. This condition can become fatal if it affects the respiratory muscles, posing the threat of suffocation. It also occurs in the spinal shock stage in complete transection of the spinal cord occurring in injuries such as gunshot wounds.

View the full Wikipedia page for Flaccid paralysis
↑ Return to Menu

Motor neuron in the context of Pudendal nerve

The pudendal nerve is the main nerve of the perineum. It is a mixed (motor and sensory) nerve and also conveys sympathetic autonomic fibers. It carries sensation from the external genitalia of both sexes and the skin around the anus and perineum, as well as the motor supply to various pelvic muscles, including the male or female external urethral sphincter and the external anal sphincter.

If damaged, most commonly by childbirth, loss of sensation or fecal incontinence may result. The nerve may be temporarily anesthetized, called pudendal anesthesia or pudendal block.

View the full Wikipedia page for Pudendal nerve
↑ Return to Menu

Motor neuron in the context of Motor nerve

A motor nerve, or efferent nerve, is a nerve that contains exclusively efferent nerve fibers and transmits motor signals from the central nervous system (CNS) to the effector organs (muscles and glands), as opposed to sensory nerves, which transfer signals from sensory receptors in the periphery to the CNS. This is different from the motor neuron, which includes a cell body and branching of dendrites, while the nerve is made up of a bundle of axons. In the strict sense, a "motor nerve" can refer exclusively to the connection to muscles, excluding other organs. The vast majority of nerves contain both sensory and motor fibers and are therefore called mixed nerves.

View the full Wikipedia page for Motor nerve
↑ Return to Menu

Motor neuron in the context of Thalamus

The thalamus (pl.: thalami; from Greek θάλαμος, "chamber") is a large mass of gray matter on the lateral wall of the third ventricle forming the dorsal part of the diencephalon (a division of the forebrain). Nerve fibers project out of the thalamus to the cerebral cortex in all directions, known as the thalamocortical radiations, allowing hub-like exchanges of information. It has several functions, such as the relaying of sensory and motor signals to the cerebral cortex and the regulation of consciousness, sleep, and alertness.

Anatomically, the thalami are paramedian symmetrical structures (left and right), within the vertebrate brain, situated between the cerebral cortex and the midbrain. It forms during embryonic development as the main product of the diencephalon, as first recognized by the Swiss embryologist and anatomist Wilhelm His Sr. in 1893.

View the full Wikipedia page for Thalamus
↑ Return to Menu

Motor neuron in the context of Neuronal tuning

In neuroscience, neuronal tuning refers to the hypothesized property of brain cells by which they selectively represent a particular type of sensory, association, motor, or cognitive information. Some neuronal responses have been hypothesized to be optimally tuned to specific patterns through experience. Neuronal tuning can be strong and sharp, as observed in primary visual cortex (area V1), or weak and broad, as observed in neural ensembles. Single neurons are hypothesized to be simultaneously tuned to several modalities, such as visual, auditory, and olfactory. Neurons hypothesized to be tuned to different signals are often hypothesized to integrate information from the different sources. In computational models called neural networks, such integration is the major principle of operation. The best examples of neuronal tuning can be seen in the visual, auditory, olfactory, somatosensory, and memory systems, although due to the small number of stimuli tested the generality of neuronal tuning claims is still an open question.

View the full Wikipedia page for Neuronal tuning
↑ Return to Menu

Motor neuron in the context of Reflex arc

A reflex arc is a neural pathway that controls a reflex. In vertebrates, most sensory neurons synapse in the spinal cord and the signal then travels through it into the brain. This allows for faster reflex actions to occur by activating spinal motor neurons without the delay of routing signals through the brain. The brain will receive the input while the reflex is being carried out and the analysis of the signal takes place after the reflex action.

There are two types: autonomic reflex arc (affecting inner organs) and somatic reflex arc (affecting muscles). Autonomic reflexes sometimes involve the spinal cord and some somatic reflexes are mediated more by the brain than the spinal cord.

View the full Wikipedia page for Reflex arc
↑ Return to Menu

Motor neuron in the context of Amyotrophic lateral sclerosis

Amyotrophic lateral sclerosis (ALS), also known as motor neuron disease (MND) or—in the United States and CanadaLou Gehrig's disease (LGD), is a rare, terminal neurodegenerative disorder that results in the progressive loss of both upper and lower motor neurons that normally control voluntary muscle contraction. ALS is the most common form of the broader group of motor neuron diseases. ALS often presents in its early stages with gradual muscle stiffness, twitches, weakness, and wasting. Motor neuron loss typically continues until the abilities to eat, speak, move, and breathe without mechanical support are lost. While only 15% of people with ALS also develop full-blown frontotemporal dementia, an estimated 50% face at least minor changes in thinking and behavior, and a loss of energy, possibly secondary to metabolic dysfunction, is thought to drive a characteristic loss of empathy. Depending on which of the aforementioned symptoms develops first, ALS is classified as limb-onset (begins with weakness in the arms or legs) or bulbar-onset (begins with difficulty in speaking and/or swallowing). Respiratory onset occurs in approximately 1%–3% of cases.

Most cases of ALS (about 90–95%) have no known cause, and are known as sporadic ALS. However, both genetic and environmental factors are believed to be involved. The remaining 5–10% of cases have a genetic cause, often linked to a family history of the disease, and these are known as familial ALS (hereditary). About half of these genetic cases are due to disease-causing variants in one of four specific genes. The diagnosis is based on a person's signs and symptoms, with testing conducted to rule out other potential causes.

View the full Wikipedia page for Amyotrophic lateral sclerosis
↑ Return to Menu

Motor neuron in the context of Muscle tone

In physiology, medicine, and anatomy, muscle tone (residual muscle tension or tonus) is the continuous and passive partial contraction of the muscles, or the muscle's resistance to passive stretch during resting state. It helps to maintain posture and declines during REM sleep. Muscle tone is regulated by the activity of the motor neurons and can be affected by various factors, including age, disease, and nerve damage.

View the full Wikipedia page for Muscle tone
↑ Return to Menu

Motor neuron in the context of Spinal muscular atrophy

Spinal muscular atrophy (SMA) is a rare neuromuscular disorder that results in the loss of motor neurons and progressive muscle wasting. It is usually diagnosed in infancy or early childhood and if left untreated it is the most common genetic cause of infant death. It may also appear later in life and then have a milder course of the disease. The common feature is the progressive weakness of voluntary muscles, with the arm, leg, and respiratory muscles being affected first. Associated problems may include poor head control, difficulties swallowing, scoliosis, and joint contractures.

The age of onset and the severity of symptoms form the basis of the traditional classification of spinal muscular atrophy into several types.

View the full Wikipedia page for Spinal muscular atrophy
↑ Return to Menu