Motor control in the context of "Parkinson's"

Play Trivia Questions online!

or

Skip to study material about Motor control in the context of "Parkinson's"




⭐ Core Definition: Motor control

Motor control is the regulation of movements in organisms that possess a nervous system. Motor control includes conscious voluntary movements, subconscious muscle memory and involuntary reflexes, as well as instinctual taxes.

To control movement, the nervous system must integrate multimodal sensory information (both from the external world as well as proprioception) and elicit the necessary signals to recruit muscles to carry out a goal. This pathway spans many disciplines, including multisensory integration, signal processing, coordination, biomechanics, and cognition, and the computational challenges are often discussed under the term sensorimotor control. Successful motor control is crucial to interacting with the world to carry out goals as well as for posture, balance, and stability.

↓ Menu

In this Dossier

Motor control in the context of Brain

The brain is an organ that serves as the center of the nervous system in all vertebrate and most invertebrate animals. It consists of nervous tissue and is typically located in the head (cephalization), usually near organs for special senses such as vision, hearing, and olfaction. Being the most specialized organ, it is responsible for receiving information from the sensory nervous system, processing that information (thought, cognition, and intelligence) and the coordination of motor control (muscle activity and endocrine system).

While invertebrate brains arise from paired segmental ganglia (each of which is only responsible for the respective body segment) of the ventral nerve cord, vertebrate brains develop axially from the midline dorsal nerve cord as a vesicular enlargement at the rostral end of the neural tube, with centralized control over all body segments. All vertebrate brains can be embryonically divided into three parts: the forebrain (prosencephalon, subdivided into telencephalon and diencephalon), midbrain (mesencephalon) and hindbrain (rhombencephalon, subdivided into metencephalon and myelencephalon). The spinal cord, which directly interacts with somatic functions below the head, can be considered a caudal extension of the myelencephalon enclosed inside the vertebral column. Together, the brain and spinal cord constitute the central nervous system in all vertebrates.

↑ Return to Menu

Motor control in the context of Cerebellum

The cerebellum (pl.: cerebella or cerebellums; Latin for 'little brain') is a major feature of the hindbrain of all vertebrates. Although usually smaller than the cerebrum, in some animals such as the mormyrid fishes it may be as large as it or even larger. In humans, the cerebellum plays an important role in motor control and cognitive functions such as attention and language as well as emotional control such as regulating fear and pleasure responses, but its movement-related functions are the most solidly established. The human cerebellum does not initiate movement, but contributes to coordination, precision, and accurate timing: it receives input from sensory systems of the spinal cord and from other parts of the brain, and integrates these inputs to fine-tune motor activity. Cerebellar damage produces disorders in fine movement, equilibrium, posture, and motor learning in humans.

Anatomically, the human cerebellum has the appearance of a separate structure attached to the bottom of the brain, tucked underneath the cerebral hemispheres. Its cortical surface is covered with finely spaced parallel grooves, in striking contrast to the broad irregular convolutions of the cerebral cortex. These parallel grooves conceal the fact that the cerebellar cortex is actually a thin, continuous layer of tissue tightly folded in the style of an accordion. Within this thin layer are several types of neurons with a highly regular arrangement, the most important being Purkinje cells and granule cells. This complex neural organization gives rise to a massive signal-processing capability, but almost all of the output from the cerebellar cortex passes through a set of small deep nuclei lying in the white matter interior of the cerebellum.

↑ Return to Menu

Motor control in the context of Parkinson's disease

Parkinson's disease (PD), or simply Parkinson's, is a neurodegenerative disease primarily of the central nervous system, affecting both motor and non-motor systems. The motor symptoms are collectively called parkinsonism and include tremors, bradykinesia (slowness in initiating movement), rigidity, and postural instability (difficulty maintaining balance). Non-motor symptoms such as dysautonomia (autonomic nervous system failures), sleep abnormalities, anosmia (decreased ability to smell), and behavioral changes or neuropsychiatric problems, such as cognitive impairment, psychosis, and anxiety, may appear at any stage of the disease. Symptoms typically develop gradually and non-motor issues become more prevalent as the disease progresses.

Most Parkinson's disease cases are idiopathic, though contributing factors have been identified. Pathophysiology involves progressive degeneration of nerve cells in the substantia nigra, a midbrain region that provides dopamine to the basal ganglia, a system involved in voluntary motor control. The cause of this cell death is poorly understood, but involves the aggregation of alpha-synuclein into Lewy bodies within neurons. Other potential factors involve genetic and environmental influences, medications, lifestyle, and prior health conditions.

↑ Return to Menu

Motor control in the context of Movement disorder

Movement disorders are clinical syndromes with either an excess of movement or a paucity of voluntary and involuntary movements, unrelated to weakness or spasticity. Movement disorders present with extrapyramidal symptoms and are caused by basal ganglia disease. Movement disorders are conventionally divided into two major categories- hyperkinetic and hypokinetic.

Hyperkinetic movement disorders refer to dyskinesia, or excessive, often repetitive, involuntary movements that intrude upon the normal flow of motor activity.

↑ Return to Menu

Motor control in the context of Dementia

Dementia is a syndrome associated with many neurodegenerative diseases, characterized by a general decline in cognitive abilities that affects a person's ability to perform everyday activities. This typically involves problems with memory, thinking, behavior, and motor control. Aside from memory impairment and a disruption in thought patterns, the most common symptoms of dementia include emotional problems, difficulties with language, and decreased motivation. The symptoms may be described as occurring in a continuum over several stages. Dementia is a life-limiting condition, having a significant effect on the individual, their caregivers, and their social relationships in general. A diagnosis of dementia requires the observation of a change from a person's usual mental functioning and a greater cognitive decline than might be caused by the normal aging process.

Several diseases and injuries to the brain, such as a stroke, can give rise to dementia. However, the most common cause is Alzheimer's disease, a neurodegenerative disorder. Dementia is a neurocognitive disorder with varying degrees of severity (mild to major) and many forms or subtypes. Dementia is an acquired brain syndrome, marked by a decline in cognitive function, and is contrasted with neurodevelopmental disorders. It has also been described as a spectrum of disorders with subtypes of dementia based on which known disorder caused its development, such as Parkinson's disease for Parkinson's disease dementia, Huntington's disease for Huntington's disease dementia, vascular disease for vascular dementia, HIV infection causing HIV dementia, frontotemporal lobar degeneration for frontotemporal dementia, Lewy body disease for dementia with Lewy bodies, and prion diseases. Subtypes of neurodegenerative dementias may also be based on the underlying pathology of misfolded proteins, such as synucleinopathies and tauopathies. The coexistence of more than one type of dementia is known as mixed dementia.

↑ Return to Menu

Motor control in the context of Alcohol (drug)

Alcohol, sometimes referred to by the chemical name ethanol, is the active ingredient in alcoholic drinks such as beer, wine, and distilled spirits (hard liquor). Alcohol is a central nervous system (CNS) depressant, decreasing electrical activity of neurons in the brain, which causes the characteristic effects of alcohol intoxication ("drunkenness"). Among other effects, alcohol produces euphoria, decreased anxiety, increased sociability, sedation, and impairment of cognitive, memory, motor, and sensory function.

Alcohol has a variety of adverse effects. Short-term adverse effects include generalized impairment of neurocognitive function, dizziness, nausea, vomiting, and symptoms of hangover. Alcohol is addictive and can result in alcohol use disorder, dependence, and withdrawal upon cessation. The long-term effects of alcohol are considered to be a major global public health issue and include liver disease, hepatitis, cardiovascular disease (e.g., cardiomyopathy), polyneuropathy, alcoholic hallucinosis, long-term impact on the brain (e.g., brain damage, dementia, and Marchiafava–Bignami disease), and cancers; alcohol and some of its metabolites (such as acetaldehyde) are IARC group 1 carcinogens. The adverse effects of alcohol on health are most significant when it is used in excessive quantities or with heavy frequency. However, in 2023, the World Health Organization published a statement in The Lancet Public Health that concluded, "no safe amount of alcohol consumption for cancers and health can be established." In high amounts, alcohol may cause loss of consciousness or, in severe cases, death. Many governmental agencies and organizations issue alcohol consumption recommendations.

↑ Return to Menu

Motor control in the context of Basal ganglia

The basal ganglia (BG) or basal nuclei are a group of subcortical nuclei found in the brains of vertebrates. Positioned at the base of the forebrain and the top of the midbrain, they have strong connections with the cerebral cortex, thalamus, brainstem and other brain areas. The basal ganglia are associated with a variety of functions, including regulating voluntary motor movements, procedural learning, habit formation, conditional learning, eye movements, cognition, and emotion.

The main functional components of the basal ganglia include the striatum, consisting of both the dorsal striatum (caudate nucleus and putamen) and the ventral striatum (nucleus accumbens and olfactory tubercle), the globus pallidus, the ventral pallidum, the substantia nigra, and the subthalamic nucleus. Each of these components has complex internal anatomical and neurochemical structures. The largest component, the striatum (dorsal and ventral), receives input from various brain areas but only sends output to other components of the basal ganglia. The globus pallidus receives input from the striatum and sends inhibitory output to a number of motor-related areas. The substantia nigra is the source of the striatal input of the neurotransmitter dopamine, which plays an important role in basal ganglia function. The subthalamic nucleus mainly receives input from the striatum and cerebral cortex and projects to the globus pallidus.

↑ Return to Menu

Motor control in the context of Insular cortex

The insular cortex (also insula and insular lobe) is a portion of the cerebral cortex folded deep within the lateral sulcus (the fissure separating the temporal lobe from the parietal and frontal lobes) within each hemisphere of the mammalian brain.

The insulae are believed to be involved in consciousness and play a role in diverse functions usually linked to emotion, interoception, or the regulation of the body's homeostasis. These functions include compassion, empathy, taste, perception, motor control, self-awareness, cognitive functioning, interpersonal relationships, and awareness of homeostatic emotions such as hunger, pain and fatigue. In relation to these, it is involved in psychopathology.

↑ Return to Menu

Motor control in the context of Marine vertebrate

Marine vertebrates are vertebrates that live in marine environments, which include saltwater fish (including pelagic, coral and deep sea fish) and marine tetrapods (primarily marine mammals and marine reptiles, as well as semiaquatic clades such as seabirds). As a subphylum of chordates, all vertebrates have evolved a vertebral column (backbone) based around the embryonic notochord (which becomes the intervertebral discs), forming the core structural support of an internal skeleton, and also serves to enclose and protect the spinal cord.

Compared to other marine animals, marine vertebrates are distinctly more nektonic, and their aquatic locomotions rely mainly on propulsion by the tail and paired appendages such as fins, flippers and webbed limbs. Marine vertebrates also have a far more centralized nervous system than marine invertebrates, with most of the higher functions cephalized and monopolized by the brain; and most of them have evolved myelinated central and peripheral nerve system, which increases conduction speeds significantly. The combination of endoskeleton (which allows much larger body sizes for the same skeletal mass) and a more robust and efficient nervous system (which enables more acute perception and more sophisticated motor control) gives vertebrates much quicker body reactivity and behavioral adaptability, which have led to marine vertebrates dominating most of the higher-level niches in the marine ecosystems.

↑ Return to Menu