Motor in the context of Hydraulic


Motor in the context of Hydraulic

Motor Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Motor in the context of "Hydraulic"


⭐ Core Definition: Motor

An engine or motor is a machine designed to convert one or more forms of energy into mechanical energy.

Available energy sources include potential energy (e.g. energy of the Earth's gravitational field as exploited in hydroelectric power generation), heat energy (e.g. geothermal), chemical energy, electric potential and nuclear energy (from nuclear fission or nuclear fusion). Many of these processes generate heat as an intermediate energy form; thus heat engines have special importance. Some natural processes, such as atmospheric convection cells convert environmental heat into motion (e.g. in the form of rising air currents). Mechanical energy is of particular importance in transportation, but also plays a role in many industrial processes such as cutting, grinding, crushing, and mixing.

↓ Menu
HINT:

In this Dossier

Motor in the context of Electric vehicle

An electric vehicle (EV) is any motorized vehicle whose propulsion is provided fully or mostly by electric power, via grid electricity or from onboard rechargeable batteries. EVs encompass a wide range of transportation modes, including road (electric cars, buses, trucks and personal transporters) and rail vehicles (electric trains, trams and monorails), electric boats and submersibles, electric aircraft (both fixed-wing and multirotors) and electric spacecraft.

Early electric vehicles first came into existence in the late 19th century, when the Second Industrial Revolution brought forth electrification and mass utilization of DC and AC electric motors. Using electricity was among the preferred methods for early motor vehicle propulsion as it provided a level of quietness, comfort and ease of operation that could not be achieved by the gasoline engine cars of the time, but range anxiety due to the limited energy storage offered by contemporary battery technologies hindered any mass adoption of electric vehicles as private transportation throughout the 20th century. Internal combustion engines (both gasoline and diesel engines) were the dominant propulsion mechanisms for cars and trucks for about 100 years, but electricity-powered locomotion remained commonplace in other vehicle types, such as overhead line-powered mass transit vehicles like electric multiple units, streetcars, monorails and trolley buses, as well as various small, low-speed, short-range battery-powered personal vehicles such as mobility scooters.

View the full Wikipedia page for Electric vehicle
↑ Return to Menu

Motor in the context of History of robots

The history of robots has its origins in the ancient world. During the Industrial Revolution, humans developed the structural engineering capability to control electricity so that machines could be powered with small motors. In the early 20th century, the notion of a humanoid machine was developed.

The first uses of modern robots were in factories as industrial robots. These industrial robots were fixed machines capable of manufacturing tasks which allowed production with less human work. Digitally programmed industrial robots with artificial intelligence have been built since the 2000s.

View the full Wikipedia page for History of robots
↑ Return to Menu

Motor in the context of Clutch

A clutch is a mechanical device that allows an output shaft to be disconnected from a rotating input shaft. The clutch's input shaft is typically attached to a motor, while the clutch's output shaft is connected to the mechanism that does the work.

In a motor vehicle, the clutch acts as a mechanical linkage between the engine and transmission. By disengaging the clutch, the engine speed (RPM) is no longer determined by the speed of the driven wheels.

View the full Wikipedia page for Clutch
↑ Return to Menu

Motor in the context of Three-wheeler

A three-wheeler, tricar, or trike is a vehicle with three wheels. Some are motorized tricycles, which may be legally classed as motorcycles, while others are tricycles without a motor, some of which are human-powered vehicles and animal-powered vehicles.

View the full Wikipedia page for Three-wheeler
↑ Return to Menu

Motor in the context of Reel

A reel is a tool used to store elongated and flexible objects (e.g. yarns/cords, ribbons, cables, hoses, etc.) by wrapping the material around a cylindrical core known as a spool. Many reels also have flanges (known as the rims) around the ends of the spool to help retain the wrapped material and prevent unwanted slippage off the ends. In most cases, the reel spool is hollow in order to pass an axle and allow it to spin like a wheel, a winding process known as reeling, which can be done by manually turning the reel with handles or cranks, or by machine-powered rotating via (typically electric) motors.

View the full Wikipedia page for Reel
↑ Return to Menu

Motor in the context of Direct-drive mechanism

A direct-drive mechanism is a mechanism design where the force or torque from a prime mover is transmitted directly to the effector device (such as the drive wheels of a vehicle) without involving any intermediate couplings such as a gear train or a belt.

View the full Wikipedia page for Direct-drive mechanism
↑ Return to Menu

Motor in the context of Servomotor

A servomotor (or servo motor or simply servo) is a rotary or linear actuator that allows for precise control of angular or linear position, velocity, and acceleration in a mechanical system. It constitutes part of a servomechanism, and consists of a suitable motor coupled to a sensor for position feedback and a controller (often a dedicated module designed specifically for servomotors).

Servomotors are not a specific class of motor, although the term servomotor is often used to refer to a motor suitable for use in a closed-loop control system. Servomotors are used in applications such as robotics, CNC machinery, and automated manufacturing.

View the full Wikipedia page for Servomotor
↑ Return to Menu