Mosquito in the context of Japanese encephalitis


Mosquito in the context of Japanese encephalitis

Mosquito Study page number 1 of 5

Play TriviaQuestions Online!

or

Skip to study material about Mosquito in the context of "Japanese encephalitis"


⭐ Core Definition: Mosquito

Mosquitoes, the Culicidae, are a family of small flies consisting of 3,600 species. The word mosquito (formed by mosca and diminutive -ito) is Spanish and Portuguese for little fly. Mosquitoes have a slender segmented body, one pair of wings, three pairs of long hair-like legs, and specialized, highly elongated, piercing-sucking mouthparts. All mosquitoes drink nectar from flowers; females of many species have adapted to also drink blood. The group diversified during the Cretaceous period. Evolutionary biologists view mosquitoes as micropredators, small animals that parasitise larger ones by drinking their blood without immediately killing them. Medical parasitologists view mosquitoes as vectors of disease, carrying protozoan parasites or bacterial or viral pathogens from one host to another.

The mosquito life cycle consists of four stages: egg, larva, pupa, and adult. Eggs are laid on the water surface; they hatch into motile larvae that feed on aquatic algae and organic material. These larvae are important food sources for many freshwater animals, such as dragonfly nymphs, many fish, and some birds. Adult females of many species have mouthparts adapted to pierce the skin of a host and feed on blood of a wide range of vertebrate hosts, and some invertebrates, primarily other arthropods. Some species only produce eggs after a blood meal.

↓ Menu
HINT:

In this Dossier

Mosquito in the context of Aquatic animal

An aquatic animal is any animal, whether vertebrate or invertebrate, that lives in a body of water for all or most of its lifetime. Aquatic animals generally conduct aquatic respiration by extracting dissolved oxygen in water via specialised respiratory organs called gills, through the skin or across enteral mucosae, although some are secondarily aquatic animals (e.g. marine reptiles and marine mammals) evolved from terrestrial ancestors that re-adapted to aquatic environments, in which case they actually use lungs to breathe air and are essentially holding their breath when living in water. Some species of gastropod mollusc, such as the eastern emerald sea slug, are even capable of kleptoplastic photosynthesis via endosymbiosis with ingested yellow-green algae.

Almost all aquatic animals reproduce in water, either oviparously or viviparously, and many species routinely migrate between different water bodies during their life cycle. Some animals have fully aquatic life stages (typically as eggs and larvae), while as adults they become terrestrial or semi-aquatic after undergoing metamorphosis. Such examples include amphibians such as frogs, many flying insects such as mosquitoes, mayflies, dragonflies, damselflies and caddisflies, as well as some species of cephalopod molluscs such as the algae octopus (whose larvae are completely planktonic, but adults are highly terrestrial).

View the full Wikipedia page for Aquatic animal
↑ Return to Menu

Mosquito in the context of Transmission (medicine)

In medicine, public health, and biology, transmission is the passing of a pathogen causing communicable disease from an infected host individual or group to a particular individual or group, regardless of whether the other individual was previously infected. The term strictly refers to the transmission of microorganisms directly from one individual to another by one or more of the following means:

  • airborne transmission – very small dry and wet particles that stay in the air for long periods of time allowing airborne contamination even after the departure of the host. Particle size < 5 μm.
  • droplet transmission – small and usually wet particles that stay in the air for a short period of time. Contamination usually occurs in the presence of the host. Particle size > 5 μm.
  • direct physical contact – touching an infected individual, including sexual contact
  • indirect physical contact – usually by touching a contaminated surface, including soil (fomite)
  • fecal–oral transmission – usually from unwashed hands, contaminated food or water sources due to lack of sanitation and hygiene, an important transmission route in pediatrics, veterinary medicine and developing countries.
  • via contaminated hypodermic needles or blood products

Transmission can also be indirect, via another organism, either a vector (e.g. a mosquito or fly) or an intermediate host (e.g. tapeworm in pigs can be transmitted to humans who ingest improperly cooked pork). Indirect transmission could involve zoonoses or, more typically, larger pathogens like macroparasites with more complex life cycles. Transmissions can be autochthonous (i.e. between two individuals in the same place) or may involve travel of the microorganism or the affected hosts.

View the full Wikipedia page for Transmission (medicine)
↑ Return to Menu

Mosquito in the context of Vector (epidemiology)

In epidemiology, a disease vector is any living agent that carries and transmits an infectious pathogen such as a parasite or microbe, to another living organism. Agents regarded as vectors are mostly blood-sucking (hematophagous) arthropods such as mosquitoes. The first major discovery of a disease vector came from Ronald Ross in 1897, who discovered the malaria pathogen when he dissected the stomach tissue of a mosquito.The process of proving that a vector is responsible for transmitting pathogens is called vector incrimination.

View the full Wikipedia page for Vector (epidemiology)
↑ Return to Menu

Mosquito in the context of Parasite

Parasitism is a close relationship between species, where one organism, the parasite, lives (at least some of the time) on or inside another organism, the host, causing it some harm, and is adapted structurally to this way of life. The entomologist E. O. Wilson characterised parasites' way of feeding as "predators that eat prey in units of less than one". Parasites include single-celled protozoans such as the agents of malaria, sleeping sickness, and amoebic dysentery; animals such as hookworms, lice, mosquitoes, and vampire bats; fungi such as honey fungus and the agents of ringworm; and plants such as mistletoe, dodder, and the broomrapes.

There are six major parasitic strategies of exploitation of animal hosts, namely parasitic castration, directly transmitted parasitism (by contact), trophically-transmitted parasitism (by being eaten), vector-transmitted parasitism, parasitoidism, and micropredation. One major axis of classification concerns invasiveness: an endoparasite lives inside the host's body; an ectoparasite lives outside, on the host's surface.

View the full Wikipedia page for Parasite
↑ Return to Menu

Mosquito in the context of Malaria

Malaria is a mosquito-borne infectious disease that affects vertebrates and Anopheles mosquitoes. Human malaria causes symptoms that typically include fever, fatigue, vomiting, and headaches. In severe cases, it can cause jaundice, seizures, coma, or death. Symptoms usually begin 10 to 15 days after being bitten by an infected Anopheles mosquito. If not properly treated, people may have recurrences of the disease months later. In those who have recently survived an infection, reinfection usually causes milder symptoms. This partial resistance disappears over months to years if the person has no continuing exposure to malaria. The mosquitoes themselves are harmed by malaria, causing reduced lifespans in those infected by it.

Malaria is caused by single-celled eukaryotes of the genus Plasmodium. In mammals, it is spread through bites of infected female Anopheles mosquitoes. The mosquito bite introduces the parasites from the mosquito's saliva into the blood. The parasites travel to the liver, where they mature and reproduce. Five species of Plasmodium commonly infect humans. The three species associated with more severe cases are P. falciparum (which is responsible for the vast majority of malaria deaths), P. vivax, and P. knowlesi (a simian malaria that spills over into thousands of people a year). P. ovale and P. malariae generally cause a milder form of malaria. Malaria is typically diagnosed by the microscopic examination of blood using blood films, or with antigen-based rapid diagnostic tests. Methods that use the polymerase chain reaction to detect the parasite's DNA have been developed, but they are not widely used in areas where malaria is common, due to their cost and complexity.

View the full Wikipedia page for Malaria
↑ Return to Menu

Mosquito in the context of Anopheles

Anopheles (/əˈnɒfɪlz/) is a genus of mosquito first described by the German entomologist J. W. Meigen in 1818, and are known as nail mosquitoes and marsh mosquitoes. Many such mosquitoes are vectors of the parasite Plasmodium, a genus of protozoans that cause malaria in birds, reptiles, and mammals, including humans. The Anopheles gambiae mosquito is the best-known species of marsh mosquito that transmits the Plasmodium falciparum, which is a malarial parasite deadly to human beings; no other mosquito genus is a vector of human malaria.

The genus Anopheles diverged from other mosquitoes approximately 100 million years ago (mya), and, like other mosquitoes, the eggs, larvae, and pupae are aquatic. The Anopheles larva has no respiratory siphon through which to breathe, so it breathes and feeds with its body horizontal to the surface of the water. The adult mosquito hatches from the surface and feeds on the nectar of flowers; the female mosquito also feeds on blood, which animal diet allows them to carry and transmit parasites between hosts. The adult's feeding position is head-down, unlike the horizontal stance of the culicines. Anopheles are distributed almost worldwide, throughout the tropics, the subtropics, and the temperate regions of planet Earth. In hot weather, adult Anopheles aestivate, which is a state of dormancy that enables the mosquito to survive in hot dry regions, such as the Sahel.

View the full Wikipedia page for Anopheles
↑ Return to Menu

Mosquito in the context of Nectar

Nectar is a viscous, sugar-rich liquid produced by plants in glands called nectaries, either within the flowers with which it attracts pollinating animals, or by extrafloral nectaries, which provide a nutrient source to animal mutualists, which in turn provide herbivore protection. Common nectar-consuming pollinators include mosquitoes, hoverflies, wasps, bees, butterflies and moths, hummingbirds, honeyeaters and bats. Nectar is an economically important substance as it is the sugar source for honey.

Nectar is also useful in agriculture and horticulture because the adult stages of some predatory insects feed on nectar. For example, a number of predacious or parasitoid wasps (e.g., the social wasp species Apoica flavissima) rely on nectar as a primary food source. In turn, these wasps then hunt agricultural pest insects as food for their young.

View the full Wikipedia page for Nectar
↑ Return to Menu

Mosquito in the context of Biological life cycle

In biology, a biological life cycle (or just life cycle when the biological context is clear) is a series of stages of the life of an organism, that begins as a zygote, often in an egg, and concludes as an adult that reproduces, producing an offspring in the form of a new zygote which then itself goes through the same series of stages, the process repeating in a cyclic fashion. In humans, the concept of a single generation is a cohort of people who, on average, are born around the same period of time, it is related though distinct from the biological concept of generations.

"The concept is closely related to those of the life history, development and ontogeny, but differs from them in stressing renewal." Transitions of form may involve growth, asexual reproduction, or sexual reproduction.

View the full Wikipedia page for Biological life cycle
↑ Return to Menu

Mosquito in the context of Bedroom

A bedroom or bedchamber is a room situated within a residential or accommodation unit, primarily used for sleeping. A typical Western bedroom contains as bedroom furniture one or two beds, a clothes closet, and bedside table and dressing table, both of which usually contain drawers. In dwellings with multiple stories, bedrooms are often on the upper floors. Beds range from a crib for an infant; a single or twin bed for a toddler, child, teenager or single adult; to bigger sizes like a full, double, queen, king or California king). Beds and bedrooms are often devised to create barriers to insects and vermin, especially mosquitoes, and to dampen or contain light or noise to aid sleep and privacy.

View the full Wikipedia page for Bedroom
↑ Return to Menu

Mosquito in the context of Flies

Flies are insects of the order Diptera, the name being derived from the Greek δι- di- "two", and πτερόν pteron "wing". Insects of this order use only a single pair of wings to fly, the hindwings having evolved into advanced mechanosensory organs known as halteres, which act as high-speed sensors of rotational movement and allow dipterans to perform advanced aerobatics. Diptera is a large order containing more than 150,000 species including horse-flies, crane flies, hoverflies, mosquitoes and others.

Flies have a mobile head, with a pair of large compound eyes, and mouthparts designed for piercing and sucking (mosquitoes, black flies and robber flies), or for lapping and sucking in the other groups. Their wing arrangement gives them great manoeuvrability in flight, and claws and pads on their feet enable them to cling to smooth surfaces. Flies undergo complete metamorphosis; the eggs are often laid on the larval food-source and the larvae, which lack true limbs, develop in a protected environment, often inside their food source. Other species are ovoviviparous, opportunistically depositing hatched or hatching larvae instead of eggs on carrion, dung, decaying material, or open wounds of mammals. The pupa is a tough capsule from which the adult emerges when ready to do so; flies mostly have short lives as adults.

View the full Wikipedia page for Flies
↑ Return to Menu

Mosquito in the context of Yellow fever

Yellow fever is a viral disease of typically short duration. In most cases, symptoms include fever, chills, loss of appetite, nausea, muscle pains—particularly in the back—and headaches. Symptoms typically improve within five days. In about 15% of people, within a day of improving the fever recurs, abdominal pain occurs and liver damage begins, causing yellow skin. If this occurs, the risk of bleeding and kidney problems is increased.

The disease is caused by the yellow fever virus and is spread by the bite of an infected mosquito. It infects humans, other primates, and several types of mosquitoes. In cities, it is spread primarily by Aedes aegypti, a type of mosquito found throughout the tropics and subtropics. The virus is an RNA virus of the genus Orthoflavivirus, with a full scientific name Orthoflavivirus flavi. The disease may be difficult to tell apart from other illnesses, especially in the early stages. To confirm a suspected case, blood-sample testing with a polymerase chain reaction is required.

View the full Wikipedia page for Yellow fever
↑ Return to Menu

Mosquito in the context of Pest (organism)

A pest is any organism harmful to humans or human concerns. The term is particularly used for creatures that damage crops, livestock, and forestry or cause a nuisance to people, especially in their homes. Humans have modified the environment for their own purposes and are intolerant of other creatures occupying the same space when their activities impact adversely on human objectives. Thus, an elephant is unobjectionable in its natural habitat but a pest when it tramples crops.

Some animals are disliked because they bite or sting; wolves, snakes, wasps, ants, bees, bed bugs, mosquitos, fleas and ticks belong in this category. Others enter the home; these include houseflies, which land on and contaminate food; beetles, which tunnel into the woodwork; and other animals that scuttle about on the floor at night, like rats, mice, and cockroaches, which are often associated with unsanitary conditions.

View the full Wikipedia page for Pest (organism)
↑ Return to Menu

Mosquito in the context of Ronald Ross

Sir Ronald Ross KCB KCMG FRS FRCS (13 May 1857 – 16 September 1932) was a British medical doctor who received the Nobel Prize for Physiology or Medicine in 1902 for his work on the transmission of malaria, becoming the first British Nobel laureate, and the first born outside Europe. His discovery of the malarial parasite in the gastrointestinal tract of a mosquito in 1897 proved that malaria was transmitted by mosquitoes, and laid the foundation for the method of combating the disease.

Ross was a polymath, writing a number of poems, publishing several novels, and composing songs. He was also an amateur artist and mathematician. He worked in the Indian Medical Service for 25 years. It was during his service that he made the groundbreaking medical discovery. After resigning from his service in India, he joined the faculty of Liverpool School of Tropical Medicine, and continued as Professor and Chairman of Tropical Medicine of the institute for 10 years. In 1926, he became Director-in-Chief of the Ross Institute and Hospital for Tropical Diseases, which was established in honour of his works. He remained there until his death.

View the full Wikipedia page for Ronald Ross
↑ Return to Menu

Mosquito in the context of Vector incrimination

In epidemiology, vector incrimination refers to the process of proving that a particular species, a specific vector of disease, is responsible for the transmission of a pathogen to hosts. This study is used in the identification and control of mosquito species as carriers of diseases such as malaria.

In order to decide whether a species is responsible for the spread of a pathogen, a number of parameters must be examined. The abundance and presence of organisms within a species that are infected with a pathogen, the age and parity of a vector, and the feeding behaviours of the vector are some of these parameters. From here, professionals can calculate the biting rate, infectivity, vectorial capacity and inoculation rate of the vector. In mosquitoes, the condition of the abdomen and digestion can be used to determine how often they feed, and dissection of salivary glands can be used as detection for the presence of sporozoites of a pathogen.

View the full Wikipedia page for Vector incrimination
↑ Return to Menu