Monosaccharide in the context of SsDNA


Monosaccharide in the context of SsDNA

Monosaccharide Study page number 1 of 3

Play TriviaQuestions Online!

or

Skip to study material about Monosaccharide in the context of "SsDNA"


⭐ Core Definition: Monosaccharide

Monosaccharides (from Greek monos: single, sacchar: sugar), also called simple sugars, are a class of organic compounds usually with the formula (CH2O)x. By definition they have two or more carbon-carbon bonds. More specifically, they are classified as polyhydroxy aldehydes or polyhydroxy ketones with the respective formulas H-[CHOH]
n
-CHO
and H-[CHOH]
m
-CO-[CHOH]
n
-H
. Monosaccharides can be classified by the number x of carbon atoms they contain: triose (3), tetrose (4), pentose (5), hexose (6), heptose (7), and so on.

They are colorless, water-soluble, and crystalline organic solids. Contrary to their name (sugars), only some monosaccharides have a sweet taste. Most monosaccharides have the formula (though not all molecules with this formula are monosaccharides).

↓ Menu
HINT:

In this Dossier

Monosaccharide in the context of DNA

Deoxyribonucleic acid (pronunciation; DNA) is a polymer composed of two polynucleotide chains that coil around each other to form a double helix. The polymer carries genetic instructions for the development, functioning, growth and reproduction of all known organisms and many viruses. DNA and ribonucleic acid (RNA) are nucleic acids. Alongside proteins, lipids and complex carbohydrates (polysaccharides), nucleic acids are one of the four major types of macromolecules that are essential for all known forms of life.

The two DNA strands are known as polynucleotides as they are composed of simpler monomeric units called nucleotides. Each nucleotide is composed of one of four nitrogen-containing nucleobases (cytosine [C], guanine [G], adenine [A] or thymine [T]), a sugar called deoxyribose, and a phosphate group. The nucleotides are joined to one another in a chain by covalent bonds (known as the phosphodiester linkage) between the sugar of one nucleotide and the phosphate of the next, resulting in an alternating sugar-phosphate backbone. The nitrogenous bases of the two separate polynucleotide strands are bound together, according to base pairing rules (A with T and C with G), with hydrogen bonds to make double-stranded DNA. The complementary nitrogenous bases are divided into two groups, the single-ringed pyrimidines and the double-ringed purines. In DNA, the pyrimidines are thymine and cytosine; the purines are adenine and guanine.

View the full Wikipedia page for DNA
↑ Return to Menu

Monosaccharide in the context of Deoxyribose

Deoxyribose, or more precisely 2-deoxyribose, is a monosaccharide with idealized formula H−(C=O)−(CH2)−(CHOH)3−H. Its name indicates that it is a deoxy sugar, meaning that it is derived from the sugar ribose by loss of a hydroxy group. Discovered in 1929 by Phoebus Levene, deoxyribose is most notable for its presence in DNA. Since the pentose sugars arabinose and ribose only differ by the stereochemistry at C2′, 2-deoxyribose and 2-deoxyarabinose are equivalent, although the latter term is rarely used because ribose, not arabinose, is the precursor to deoxyribose.

View the full Wikipedia page for Deoxyribose
↑ Return to Menu

Monosaccharide in the context of Sugar

Sugar is the generic name for sweet-tasting, soluble carbohydrates, many of which are used in food. Simple sugars, also called monosaccharides, include glucose, fructose, and galactose. Compound sugars, also called disaccharides or double sugars, are molecules made of two bonded monosaccharides; common examples are sucrose (glucose + fructose), lactose (glucose + galactose), and maltose (two molecules of glucose). White sugar is almost pure sucrose. During digestion, compound sugars are hydrolysed into simple sugars.

Longer chains of saccharides are not regarded as sugars, and are called oligosaccharides or polysaccharides. Starch is a glucose polymer found in plants – the most abundant source of energy in human food. Some other chemical substances, such as ethylene glycol, glycerol and sugar alcohols, may have a sweet taste, but are not classified as sugar.

View the full Wikipedia page for Sugar
↑ Return to Menu

Monosaccharide in the context of Glucose

Glucose is a sugar with the molecular formula C6H12O6. It is the most abundant monosaccharide, a subcategory of carbohydrates. It is made from water and carbon dioxide during photosynthesis by plants and most algae. It is used by plants to make cellulose, the most abundant carbohydrate in the world, for use in cell walls, and by all living organisms to make adenosine triphosphate (ATP), which is used by the cell as energy. Glucose is often abbreviated as Glc.

In energy metabolism, glucose is the most important source of energy in all organisms. Glucose for metabolism is stored as a polymer, in plants mainly as amylose and amylopectin, and in animals as glycogen. Glucose circulates in the blood of animals as blood sugar. The naturally occurring form is d-glucose, while its stereoisomer l-glucose is produced synthetically in comparatively small amounts and is less biologically active. Glucose is a monosaccharide containing six carbon atoms and an aldehyde group, and is therefore an aldohexose. The glucose molecule can exist in an open-chain (acyclic) as well as ring (cyclic) form. Glucose is naturally occurring and is found in its free state in fruits and other parts of plants. In animals, it is released from the breakdown of glycogen in a process known as glycogenolysis.

View the full Wikipedia page for Glucose
↑ Return to Menu

Monosaccharide in the context of Fructose

Fructose (/ˈfrʌkts, -z/), or fruit sugar, is a common monosaccharide, i.e. a simple sugar. It is classified as a reducing hexose, more specifically a ketonic simple sugar found in many plants, where it is often bonded to glucose to form the disaccharide sucrose. In terms of structure, it is a C-4 epimer of glucose. A white, water-soluble solid,It is one of the three dietary monosaccharides, along with glucose and galactose.Fructose is found in honey, tree and vine fruits, flowers, berries, and most root vegetables.

View the full Wikipedia page for Fructose
↑ Return to Menu

Monosaccharide in the context of Xanthan gum

Xanthan gum (/ˈzænθən/) is a polysaccharide with many industrial uses, including as a common food additive. It is an effective thickening agent and stabilizer that prevents ingredients from separating. It can be produced from simple sugars by fermentation and derives its name from the species of bacteria used, Xanthomonas campestris.

View the full Wikipedia page for Xanthan gum
↑ Return to Menu

Monosaccharide in the context of Saccharolipid

Saccharolipids are chemical compounds containing fatty acids linked directly to a sugar backbone, forming structures that are compatible with membrane bilayers. In the saccharolipids, a monosaccharide substitutes for the glycerol backbone present in glycerolipids and glycerophospholipids. The most familiar saccharolipids are the acylated glucosamine precursors of the lipid A component of the lipopolysaccharides in Gram-negative bacteria. Typical lipid A molecules are disaccharides of glucosamine, which are derivatized with as many as seven fatty-acyl chains. The minimal lipopolysaccharide required for growth in Escherichia coli is Kdo2-Lipid A, a hexa-acylated disaccharide of glucosamine (LipidA) that is glycosylated with two 3-deoxy-D-manno-octulosonic acid (Kdo) residues.

Acyl-trehaloses, such as Mycobacterial cord factor are further examples of sacharolipids.

View the full Wikipedia page for Saccharolipid
↑ Return to Menu

Monosaccharide in the context of Catabolic

Catabolism (/kəˈtæbəlɪzəm/) is the set of metabolic pathways that breaks down molecules into smaller units that are either oxidized to release energy or used in other anabolic reactions. Catabolism breaks down large molecules (such as polysaccharides, lipids, nucleic acids, and proteins) into smaller units (such as monosaccharides, fatty acids, nucleotides, and amino acids, respectively). Catabolism is the breaking-down aspect of metabolism, whereas anabolism is the building-up aspect.

Cells use the monomers released from breaking down polymers to either construct new polymer molecules or degrade the monomers further to simple waste products, releasing energy. Cellular wastes include lactic acid, acetic acid, carbon dioxide, ammonia, and urea. The formation of these wastes is usually an oxidation process involving a release of chemical free energy, some of which is lost as heat, but the rest of which is used to drive the synthesis of adenosine triphosphate (ATP). This molecule acts as a way for the cell to transfer the energy released by catabolism to the energy-requiring reactions that make up anabolism.

View the full Wikipedia page for Catabolic
↑ Return to Menu

Monosaccharide in the context of Arabinose

Arabinose is an aldopentose – a monosaccharide containing five carbon atoms, and including an aldehyde (CHO) functional group.

View the full Wikipedia page for Arabinose
↑ Return to Menu

Monosaccharide in the context of Galactose

Galactose (/ɡəˈlækts/, galacto- + -ose, sometimes abbreviated Gal, is a common monosaccharide, i.e. a simple sugar. It is classified as a reducing hexose, more specifically an aldohexose. In terms of structure, it is a C-4 epimer of glucose. A white, water-soluble solid, it is about as sweet as glucose, and about 65% as sweet as sucrose.

View the full Wikipedia page for Galactose
↑ Return to Menu

Monosaccharide in the context of Invert sugar

Inverted sugar syrup is a syrup mixture of the monosaccharides glucose and fructose, made by splitting the disaccharide sucrose. This mixture's optical rotation is opposite to that of the original sugar, which is why it is called an invert sugar. Splitting is completed through hydrolytic saccharification.

View the full Wikipedia page for Invert sugar
↑ Return to Menu

Monosaccharide in the context of Saccharification

Saccharification is a term in biochemistry for denoting any chemical change wherein a monosaccharide molecule remains intact after becoming unbound from another saccharide. For example, when a carbohydrate is broken into its component sugar molecules by hydrolysis (e.g., sucrose being broken down into glucose and fructose).

Enzymes such as amylases (e.g. in saliva) and glycoside hydrolase (e.g. within the brush border of the small intestine) are able to perform exact saccharification through enzymatic hydrolysis.Through thermolysis, saccharification can also occur as a transient result, among many other possible effects, during caramelization.

View the full Wikipedia page for Saccharification
↑ Return to Menu

Monosaccharide in the context of Deoxyribonucleoside

A deoxyribonucleotide is a nucleotide that contains deoxyribose. They are the monomeric units of the informational biopolymer, deoxyribonucleic acid (DNA). Each deoxyribonucleotide comprises three parts: a deoxyribose sugar (monosaccharide), a nitrogenous base, and one phosphoryl group. The nitrogenous bases are either purines or pyrimidines, heterocycles whose structures support the specific base-pairing interactions that allow nucleic acids to carry information. The base is always bonded to the 1'-carbon of the deoxyribose, an analog of ribose in which the hydroxyl group of the 2'-carbon is replaced with a hydrogen atom. The third component, the phosphoryl group, attaches to the deoxyribose monomer via the hydroxyl group on the 5'-carbon of the sugar.

When deoxyribonucleotides polymerize to form DNA, the phosphate group from one nucleotide will bond to the 3' carbon on another nucleotide, forming a phosphodiester bond via dehydration synthesis. New nucleotides are always added to the 3' carbon of the last nucleotide, so synthesis always proceeds from 5' to 3'.

View the full Wikipedia page for Deoxyribonucleoside
↑ Return to Menu

Monosaccharide in the context of Pentose

In chemistry, a pentose is a monosaccharide (simple sugar) with five carbon atoms. The chemical formula of many pentoses is C
5
H
10
O
5
, and their molecular weight is 150.13 g/mol.

Pentoses are very important in biochemistry. Ribose is a constituent of RNA, and the related molecule, deoxyribose, is a constituent of DNA. Phosphorylated pentoses are important products of the pentose phosphate pathway, most importantly ribose 5-phosphate (R5P), which is used in the synthesis of nucleotides and nucleic acids.

View the full Wikipedia page for Pentose
↑ Return to Menu

Monosaccharide in the context of Triose

A triose is a monosaccharide, or simple sugar, containing three carbon atoms. There are only three possible trioses: the two enantiomers of glyceraldehyde, which are aldoses; and dihydroxyacetone, a ketose which is symmetrical and therefore has no enantiomers.

Trioses are important in photosynthesis and cellular respiration. During glycolysis, fructose-1,6-bisphosphate is broken down into glyceraldehyde-3-phosphate and dihydroxyacetone phosphate. Lactic acid and pyruvic acid are later derived from these molecules.

View the full Wikipedia page for Triose
↑ Return to Menu

Monosaccharide in the context of Tetrose

In organic chemistry, a tetrose is a monosaccharide with 4 carbon atoms. They have either an aldehyde (−CH=O) functional group in position 1 (aldotetroses) or a ketone (>C=O) group in position 2 (ketotetroses).

The aldotetroses have two chiral centers (asymmetric carbon atoms) and so 4 different stereoisomers are possible. There are two naturally occurring stereoisomers, the enantiomers of erythrose and threose having the D configuration but not the L enantiomers. The ketotetroses have one chiral center and, therefore, two possible stereoisomers: erythrulose (L- and D-form). Again, only the D enantiomer is naturally occurring.

View the full Wikipedia page for Tetrose
↑ Return to Menu

Monosaccharide in the context of Hexose

In chemistry, a hexose is a monosaccharide (simple sugar) with six carbon atoms. The chemical formula for all hexoses is C6H12O6, and their molecular weight is 180.156 g/mol.

Hexoses exist in two forms, open-chain or cyclic, that easily convert into each other in aqueous solutions. The open-chain form of a hexose, which usually is favored in solutions, has the general structure H−(CHOH)n−1−C(=O)−(CHOH)6−n−H, where n is 1, 2, 3, 4, 5. Namely, five of the carbons have one hydroxyl functional group (−OH) each, connected by a single bond, and one has an oxo group (=O), forming a carbonyl group (C=O). The remaining bonds of the carbon atoms are satisfied by seven hydrogen atoms. The carbons are commonly numbered 1 to 6 starting at the end closest to the carbonyl.

View the full Wikipedia page for Hexose
↑ Return to Menu